Excalibur Primary School Calculation Policy

Adopted: November 2022

Original document written and prepared by Anthony Reddy and Dave Godfrey

Contents:

Page
2: General Principles of Calculation
3: Concrete \& Pictorial Resources / 'Mastery’ of Mathematics
4: Overview of Calculation Approaches
8: Calculation Vocabulary
9: Mental Methods of Calculation
10: CPA \& Informal Written Methods / Mental Jottings
11: Formal (Column) Written Methods of Calculation
12: National Curriculum Objectives - Addition and Subtraction
13: National Curriculum Objectives - Multiplication and Division
14: Addition Progression
26: Subtraction Progression
40: Multiplication Progression
60: Division Progression

General Principles of Calculation

When faced with a calculation, children are able to decide which method is most appropriate and have strategies to check its accuracy. Whatever method is chosen (in any year group), it must still be underpinned by a secure and appropriate knowledge of number facts.

By the end of Year 5, children should:

- have a secure knowledge of number facts and a good understanding of the four operations in order to:
- carry out calculations mentally when using one-digit and two-digit numbers
- use particular strategies with larger numbers when appropriate
- use notes and jottings to record steps and part answers when using longer mental methods
- have an efficient, reliable, compact written method of calculation for each operation that children can apply with confidence when undertaking calculations that they cannot carry out mentally;

Children should always look at the actual numbers (not the size of the numbers) before attempting any calculation to determine whether or not they need to use a written method. Therefore, the key question children should always ask themselves before attempting a calculation is
'Can I do this in my head?'

This should be the first principle for any calculation, whether addition, subtraction, multiplication \& division. If a child is asking themselves this question it means that they are looking at the actual numbers and using their sense of number to determine whether there is an easier method that they could use rather than column / standard procedures.

In the previous curriculum, the next question that children should ask themselves (if they could answer the calculation mentally) would be whether or not they needed to jot something down to support their thinking and help them calculate - 'Do I need a jotting?'. If the answer to this question was 'yes' then the children would access the wide range of mental strategies \& jottings outlined later in this document.

If, however, the numbers were too difficult or unwieldy for a mental method or jotting to be appropriate then they would ask the question
‘Do I need a written method?'. Again, if the written method was the most efficient and appropriate way to find the answer, they would access one of the written methods (either informal or standard) found later in this document.
(NB. Section 5 explains this principle in detail, with examples for each of the four operations)

The 2014 National Curriculum, though, recommends a Mastery approach to teaching calculation, meaning that there are now 2 additional questions which children should be asking before moving to jottings or written methods - 'Can I make it?' and 'Can I draw a picture of it?'.
These are explained in the next section. (see below)

Concrete and Pictorial Resources / 'Mastery' of Mathematics

The ability of a child to work calculations out mentally, and also to successfully master a written procedure should initially come from a secure understanding of each calculation.
This is achieved through the use of concrete and pictorial resources throughout EYFS and both Key Stages.

The 2014 National Curriculum advocates a 'mastery' approach to mathematics suggesting all children should master conceptual understanding of any calculation they are attempting to solve. Mastery is the approach adopted in the Far East when teaching mathematics, (particularly in Singapore and Shanghai), and aims to ensure that children are given a substantial depth of understanding in place value for each year group.

This understanding, which is built up through regular use of concrete apparatus becomes the foundation of the CPA (Concrete - Pictorial - Abstract) approach to teaching.

Children who have developed secure visual place value through the use of concrete apparatus, manipulatives and images (such as Base 10 / Tens Frames / Number Rods / Numicon / Place Value Counters etc) are then able to apply it when learning methods of calculation.
This ensures that they fully understand a calculation rather than just learning a method by rote. Consequently, the written method 'makes sense' and can be retained much more easily as it is based on conceptual understanding.

Therefore, a child who has 'mastered' a calculation can now ask themselves 2 extra questions that enable them to explain their understanding ('Can I make it?') or give them a visual alternative to a written method

(‘Can I draw a picture?').

The example below shows the development of 15×5 from Concrete understanding (Place Value Counters and Base 10) to mental jottings (Number Line) to informal methods that support mental arithmetic (Grid Method / Partitioning) to an expanded method and finally to the column procedure.

M7: Expanded Column

M8: Column Multiplication

This calculation policy has been upgraded in line with the 2014 National Curriculum to reflect Mastery, and (as seen above) each calculation method now begins with Concrete materials before progressing to the mental and written methods advocated by the previous curriculum.

The Importance of Vocabulary in Calculation

It is vitally important that children are exposed to the relevant calculation vocabulary throughout their progression through the four operations.
Initially, they need to understand the meaning of 'equals', which, in general terms means that the amount on either side of the equals symbol has the same value, but may look different. E.g. $20+4=8 \times 3$ or $1 / 2$ of $96=50-2$ Equals can also be described and visualised as a 'balance' or used to determine when amounts are equivalent.

Key Vocabulary:

(to be used from Y1 for addition \& subtraction and Y2 for multiplication \& division)
Each of the four number operations has key associated vocabulary, as well as specific structures, models and images. Each of these will be discussed, pictured and outlined later in this document in the appropriate sections.

Addition: The detailed discussion of vocabulary and associated images and structures (aggregation \& augmentation) for addition will be discussed in the section on Addition Progression (Pages ???) The main language of addition, which can be used for any calculation, no matter what structure is being used, is:

Total \& Sum Add / Plus
E.g. 'The sum of 12 and 4 is 16 ', ' 12 add 4 equals 16 ' ' 12 and 4 have a total of 16 ' '12 plus 4 equals 16 '

The other words on the poster (altogether, combine, increase, more) are more specific to different structures, and will be discussed later.

Subtraction: The detailed explanation of subtraction vocabulary and images, linked to the 3 key structures of comparison, partitioning and reduction, will be discussed in the section on Subtraction Progression (Pages ???)
The main subtraction vocabulary, which can be used for any calculation, no matter which key structure, is: -

Difference between

Subtract / Minus (not 'take away')
E.g. 'The difference between 12 and 4 is 8 ',

'12 subtract 4 equals 8 '
'12 minus 4 equals 8 '
The other words on the poster (less than, fewer than, more than, take away, how many left, decrease, remove) are more specific to different structures, and will be discussed later.

Multiplication: Multiplication vocabulary and imagery, and its associated structures of repeated addition and scaling, will be explored in greater detail later in the document (Page ???)
The key vocabulary for multiplication, which can be used for any calculation, no matter which key structure, is:
Product Multiplied by / Times
E.g. 'The product of 12 and 4 is 48 ',
' 12 multiplied by 4 equals 48 '

12 times 4 equals 48

The words on the poster (groups of, lots of, times the size), which are more specific to different structures, will be discussed later.

Division: There will be a more detailed explanation of division, including the two key structures and the main models and images that support division, later in the document (Page ???)

Divisor \& Quotient Divide
E.g. 'The quotient of 12 and 4 is 3 ',
' 12 divided by 4 equals 3 '
'When we divide 12 by 4 , the divisor of 4 goes into 12 three times'

Additional Vocabulary:

The VCP vocabulary posters contain both the key and additional vocabulary children should be exposed to.

Conceptual Understanding

Using key vocabulary highlights some important conceptual understanding in calculation. For example, the answer in a subtraction calculation is called the difference. Therefore, whether we are counting back (taking away), or counting on, to work out a subtraction calculation, either way we are always finding the difference between two numbers.

Mental Methods of Calculation

Oral and mental work in mathematics is essential, particularly so in calculation.
Early practical, oral and mental work must lay the foundations by providing children with a good understanding of how the four operations build on efficient counting strategies and a secure knowledge of place value and number facts.
Later work must ensure that children recognise how the operations relate to one another and how the rules and laws of arithmetic are to be used and applied.
On-going oral and mental work provides practice and consolidation of these ideas. It must give children the opportunity to apply what they have learnt to particular cases, exemplifying how the rules and laws work, and to general cases where children make decisions and choices for themselves.

The ability to calculate mentally forms the basis of all methods of calculation and has to be maintained and refined. A good knowledge of numbers or a 'sense' of number is the product of structured practice and repetition. It requires an understanding of number patterns and relationships developed through directed enquiry, use of models and images and the application of acquired number knowledge and skills. Secure mental calculation requires the ability to:

- recall key number facts instantly - for example, all number bonds to 20, and doubles of all numbers up to double 20 (Year 2) and multiplication facts up to 12×12 (Year 4);
- use taught strategies to work out the calculation - for example, recognise that addition can be done in any order and use this to add mentally a one-digit number to a one-digit or two-digit number (Year 1), add two-digit numbers in different ways (Year 2), add and subtract numbers mentally with increasingly large numbers (Year 5);
- understand how the rules and laws of arithmetic are used and applied - for example to use commutativity in multiplication (Year 2), estimate the answer to a calculation and use inverse operations to check answers (Years 3 \& 4), use their knowledge of the order of operations to carry out calculations involving the four operations (Year 6).

The first 'answer' that a child may give to a mental calculation question would be based on instant recall.
E.g. "What is $12+4$?", "What is 12×4 ?", "What is $12-4$?" or "What is $12 \div 4$?" giving the immediate answers " 16 ", " 48 ", " 8 " or " 3 "
Other children would still work these calculations out mentally by counting on from 12 to 16, counting in 4 s to 48 , counting back in ones to 8 or counting up in 4 s to 12.

From instant recall, children then develop a bank of mental calculation strategies for all four operations, in particular addition and multiplication.
These would be practised regularly until they become refined, where children will then start to see and use them as soon as they are faced with a calculation that can be done mentally.

The following pages contain thumbnails of the posters found in the Mental Calculation Policy.

	MAI: Monipulate Colculation $\begin{aligned} & 35+19=54 \\ & 34 \cdot 1 \\ & 34+20=54 \end{aligned}$	MA2: Round \& Adjust $\begin{gathered} 35+19=54 \\ 35+20-1 \\ 55-1=54 \end{gathered}$	MA3: Partitioning $\begin{aligned} & 35+82=117 \\ & 10+7=117 \end{aligned}$	MA4a: Counting On $\begin{aligned} & +5+3 \\ & 35+8=43 \end{aligned}$	MA4b: Counting On $35+20=55$ $+20$ 35 55	MA5: Double a Adjust $\begin{gathered} 35+36=71 \\ 35 \text { 1 } \\ 70+1=71 \end{gathered}$	MA6: Number Bonds $\begin{aligned} & 35+95=130 \\ & 30+100=130 \end{aligned}$	
	MAI: Manipulate Calculation $16+9=25$ 	MA2: Round \& Adjust $\begin{gathered} 45+9=54 \\ \operatorname{lll}_{45}^{+70}\|\operatorname{lli}-7\|{ }_{54} \end{gathered}$	MA3: Partitioning. $\mathbf{4 3 + 2 1 = 6 4}$ llls+ Il. Hells lelles.	MA4a: Counting On \square $+2$ \square $8+6=14$	MA4b: Counting On	MA5: Double \& Adjust $7+8=15$ $7+8=7+7+1=14+1=15$	MA6: Number Bonds $3+4+7=14$ $8+88=$ \square	
	MAI: Manipulate Colculation $\begin{aligned} & 16+9=25 \\ & 15+10=25 \end{aligned}$	MA2: Round \& Adjust $\begin{gathered} 45+9=54 \\ 45+10-1= \\ 55-1=54 \end{gathered}$	MA3: Partitioning $\begin{aligned} & 8+6=14 \\ & 8+2+4=14 \end{aligned}$	MA4a: Counting On $\begin{aligned} & +2+4 \\ & 8+6=14 \end{aligned}$	MA4b: Counting On $\begin{gathered} 57+10=67 \\ \|x 7+10\| \\ 57 \end{gathered}$	MA5: Double \& Adjust $5+6=11$	MA6: Number Bonds $3+4+7=14$ 104	
17	MAI: Monipulate Colculation $\begin{gathered} 45+19=64 \\ 441 \\ 44+20=64 \end{gathered}$	MA2: Round \& Adjust $\begin{gathered} 45+19=64 \\ 45+26-1 \\ 65-1=64 \end{gathered}$	MA3: Partitioning $\begin{aligned} & 43+21=64 \\ & 60+4=64 \end{aligned}$	MA4a: Counting On $\begin{aligned} & +2+5 \\ & 78+7=85 \end{aligned}$	MA4b: Counting On $58+40=98$ 58 98	MA5: Double \& Adjust $\begin{gathered} 7+8=15 \\ 7+1=15 \\ 14+1 \end{gathered}$	MA6: Number Bonds $13+4+7+16=40$ 2020	
	MAI: Monipulate Colculation $\begin{aligned} & 45+97=142 \\ & 42 \\ & 42+100=142 \end{aligned}$	MA2: Round \& Adjust $\begin{gathered} 45+97=142 \\ 45+100-3 \\ 145-3=142 \end{gathered}$	MAI: Partitioning $\begin{aligned} & 57+25=82 \\ & 70+12=82 \end{aligned}$	MA4a: Counting On $85+50=135$	MA4b: Counting On $\begin{gathered} 534+300=834 \\ \|+300\| \\ 534<834 \end{gathered}$	MA5: Double \& Adjust $\begin{gathered} 16+17=33 \\ 32+1=33 \end{gathered}$	MA6: Number Bonds $42+16+28+54=140$ 7070	
	MAI: Manipulate Colculation $\begin{aligned} & 345+298=643 \\ & 3432 \\ & 343+300=643 \end{aligned}$	MA2: Round \& Adjust $\begin{gathered} 345+298=643 \\ 345+300-2 \\ 645-2=643 \end{gathered}$	MAI: Partitioning $\left.\right\|_{800+70+9=879} ^{648+231}=879$	MA4a: Counting On $\begin{gathered} +20 \\ 784+60=844 \end{gathered}$	MA4b: Counting On $4837+3000=7837$ +3000 48377837	MA5: Double \& Adjust $\begin{gathered} 37+38=75 \\ 34+1=75 \end{gathered}$	MA6: Number Bonds $342+16+28+114=50$ $370 \quad 130$	
15	MAI: Monipulate Calculation $4645+1996=6641$ 46414 $4641+2000=6641$	MA2: Round \& Adjust $4645+1996=6641$ $4645+2000-4$ $6645-\quad 4=6641$	MA3: Partitioning $\left.\right\|_{200+120+14} ^{576+258}=834$	$\begin{aligned} & \text { MA4a: Counting } O_{n} \\ & +200\}+300 \\ & 837+500=1337 \end{aligned}$	MA4b: Counting On $7583+5000=12583$ \} + 5 0 0 0 \| 7583112583	MA5: Double \& Adjust $\begin{gathered} 125+127=252 \\ 250+2=252 \end{gathered}$		
		$\begin{aligned} & \text { MA2: Round \& Adjust } \\ & 7=45.2+49.9=95.1 \\ & 45.2+50-0.1 \\ & 95.2-0.1=95.1 \end{aligned}$	MA3: Partitioning $\begin{aligned} & 4.73+2.21=6.94 \\ & 6+0.9+0.04=6.94 \end{aligned}$	MA4a: Counting On $+0.3\}+0.5$ $6.7+0.8=7.5$	MA4b: Counting On $5,763,947+4,000,000$ $\underbrace{_{44,000,000} \mid}_{5,763,947}=9,763,947$	MA5: Double \& Adjust $\begin{gathered} 4.5+4.7=9.2 \\ 4.5) \\ 9+0.2=9.2 \end{gathered}$	$\left\lvert\, \begin{array}{ll} \text { MA6: Number Bonds } \\ \text { 24.25+3.63+21.75 } 77.63 \\ \hline 26 \end{array}\right.$	

	MSt Uathis ondatien $\begin{aligned} & 84-29=55 \\ & +1+1 \\ & 85-30=55 \end{aligned}$	Ma2: Round \& Majust $\begin{gathered} 84-29=55 \\ 84-30+1 \\ 54+1=55 \end{gathered}$	MS3: Partútionina $63-35=28$ $\text { (3) }-2$ 63 (30) 28
		MA2: Round is Adjust $\begin{aligned} & 24-9=15 \\ & \Delta A_{26} \cdot V_{16} \cdot \frac{1}{5} \end{aligned}$	MS3: Portitionina $63-35=28$ 20 20 63 (32)

\begin{tabular}{|c|c|c|c|c|}
\hline MS49: Counting On
\[
61-58=3
\] \& \begin{tabular}{l}
MS4b: Counting On
\[
40-28=12
\] \\
(42) 419 \\
\(28 \quad 50 \quad 40\)
\end{tabular} \& \begin{tabular}{l}
MS5as Connting Bock
\[
68-20=48
\] \\
45 69 \\
\((10)\)
\end{tabular} \& MS5b: Counting Bock
\[
\begin{gathered}
86-12=74 \\
(10-2 \\
\left.(86)^{-76}\right)
\end{gathered}
\] \& MS6: Number Focts
\[
\begin{aligned}
\& 61-41=20 \\
\& \{41+20=61
\end{aligned}
\] \\
\hline \begin{tabular}{l}
MS40: Counting On
\[
12-9=3
\] \\
\(\mathbf{0} 000000000000\) \(1000006000-\)
\end{tabular} \& MS4b: Counting On
\[
\begin{aligned}
\& 40-28=12 \\
\& 4 v^{-1} \| \sqrt{-5} \\
\& 28
\end{aligned}
\] \& MS5as Countina Back \& MS5b: Countina Bock
\[
86-12=74
\]
\[
34 \quad 36 \quad 36
\]
49 \& \begin{tabular}{l}
MS6: Number Focts
\[
61-41=20
\] \\
\(\{41+12+51\}\)

\end{tabular}

\hline \begin{tabular}{l}
MS4a: Counting On
$$
12-9=3
$$

(4)

$$
8
$$

\end{tabular} \& \& MSSa: Counting Bock

$$
15-4=11
$$

\qquad \& \& MS6: Number Fects

$$
\begin{aligned}
& 19-9=10 \\
& 9+10=19
\end{aligned}
$$

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \[
19
\] \& \[
\begin{gathered}
\text { MSE } 1 \text { nemphta odalinim } \\
84-29=55 \\
+1 \quad+1 \\
85-30=55
\end{gathered}
\] \& \[
\begin{gathered}
\text { MA2: Round } \mathrm{A} \text { M M wast } \\
84-29=55 \\
84-36+1 \\
54+1=55
\end{gathered}
\] \& \begin{tabular}{l}
M53: Partitioning
\[
63-35=28
\] \\
- 13 < 2 \\
\(63) 30\) \\
28
\end{tabular} \& \begin{tabular}{l}
MS49: Counting On
\[
61-58=3
\] \\
(43)
\end{tabular} \& M54b: Counting On
\[
40-28=12
\] \& \begin{tabular}{l}
M55\% Counting Bock
\[
68-20=48
\] \\
(20)
\end{tabular} \& MS5b: Counting Bock
\[
\begin{aligned}
\& 86-12=74 \\
\& \times 10 \quad 2 \\
\& 86)(76)(74
\end{aligned}
\] \& M56: Number Focts
\[
\begin{aligned}
\& 61-41=20 \\
\& \{41+20=61\}
\end{aligned}
\] \\
\hline \& \& MA2: Round A MMust
\[
\begin{gathered}
463-97=366 \\
463-100+3 \\
363+3=366
\end{gathered}
\] \& \begin{tabular}{l}
MS3: Partitioning
\[
\begin{gathered}
123-28=95 \\
-25-5
\end{gathered}
\] \\
123 100 (05)
\end{tabular} \& \begin{tabular}{l}
MS4a: Counting On
\[
302-297=5
\] \\
(45)

$$
207
$$

$\$ 02$
\end{tabular} \& MS4b: Counting On

\[
61-37=24

\] \& | MS5a: Counting Bock $378-50=328$ \qquad 7^{38} |
| :--- |
| -50 | \& \[

$$
\begin{aligned}
& \text { MS5b: Counting Bock } \\
& 89-34=55 \\
& -10 \quad 4 \\
& 89 \text { (59) } 55
\end{aligned}
$$
\] \& MS6: Numbler Focts

$$
\begin{aligned}
& 123-83=40 \\
& \{83+40=123\}
\end{aligned}
$$

\hline $$
7
$$ \& \[

$$
\begin{aligned}
& 876-298=578 \\
& +2+2 \\
& 878-300=578
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
\text { MA2: Rond \& M Must } \\
876-298=578 \\
876-300+2 \\
576+2=578
\end{gathered}
$$
\] \& M53: Partitioning

$$
132-58=74
$$

$$
-52-6
$$ \& MS4a: Counting On $1003-098=5$ \& \[

$$
\begin{gathered}
\text { MS4bt Counting On } \\
324-280=44 \\
420 \text { (920) } \\
250-300=24
\end{gathered}
$$

\] \& | MS5ar Counting Back $768-200=568$ \qquad 760 |
| :--- |
| (200) | \& MS5b: Counting Bock

\[
$$
\begin{gathered}
578-45=533 \\
-40-5 \\
578)(539)
\end{gathered}
$$

\] \& | MS5: Number Focts |
| :--- |
| $847 \cdot 447=400$ |
| $446+400=8473$ |

\hline $$
175
$$ \& \& \[

$$
\begin{aligned}
& \text { MA2: Rond \& Adjubt } \\
& 5864-2996=2065 \\
& 5064-3000+4 \\
& 2964+4=2060
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \text { MS3: Partitioning } \\
& 750-372=378 \\
& -350-22 \\
& (750)(400)
\end{aligned}
$$

\] \& | MS49: Counting On $8.3-7.9=0.4$ |
| :--- |
| (904) | \& \& | MS5\% Counting Bock 7291-2000 $=5231$ |
| :--- |
| 5391 \qquad 731 |
| (2008) | \& | MS5b: Counting Bock $8.6-4.1=4.5$ |
| :--- |
| (4) -0.1 $8.64 .64 .5$ | \& | MS6: Number Foets |
| :--- |
| $1424-724=700$ |
| $\{726+700=10263$ |

\hline \[
176

\] \& \& Maz: Round a Mabost 46157 - $10999=34758$ 4685 - 11000 + +6ertionens \& MS3: Partitioning 64.30 - 124.56 - 03.80 $-524.30-20 \mathrm{p}$ (1und (100) (10n0 \& MS4a: Counting On c12.02- $\mathrm{cl1.98}=4 \mathrm{p}$ \& | MS4b: Counting On |
| :--- |
| $12.4-9.8=2.6$ |
| $4028(024)$ |
| $0.818 \quad 12.4$ | \& MS5a: Counting Back 06174-20000 $=66774$ 66974 \qquad 86974 00000 \& MS5b: Counting Bock c55. 87 - $230.34=\operatorname{cos.54}$ - $830-24 \mathrm{p}$ cos.47) cas. 87 cos. 8 \& | MS6: Number Focts |
| :--- |
| $13.2-9.2=4$ |
| $59.2+4=13.2\}$ |

\hline
\end{tabular}

$\begin{aligned} & +10+10 \\ & 14+2=7 \end{aligned}$

MDC: Bitule 100 dimp Daith $\begin{aligned} 800+50 & =16 \\ 800+100 & =8 \\ 8 \times 2 & =16 \end{aligned}$	MD3: HalVing
NDAs OUH 1000 Hmplath $\begin{aligned} 800+25 & =32 \\ 800+100 & =8 \\ 8 \times 2 & =16 \\ 16 \times 2 & =32 \end{aligned}$	MD3a: HalVina Holf of ${ }^{2} 6$ $10+3=13$

$\begin{aligned} & 1200+400 \\ & \frac{1}{100} \frac{1}{100} \\ & 12+4=3 \end{aligned}$

$|$| MD3b HolVing |
| :--- |
| Holf of $\overline{5} 8$ |
| $25+4=29$ |

MD4e: Molve, Walle, Haln $5000+8=625$ Natr ef $5000=2500$ nemt +1 en italt et $2500=1250$ teme -0 fir ed 1250 =621 ane - a

MDut Minpulitr Cialithe $\begin{aligned} & 18+1.5 \\ & x^{2} x^{2} \\ & 36+3=12 \end{aligned}$

$|$| MD3\& Holving |
| :--- |
| Holf of 326 |
| $160+3=163$ |
| Holf of 326 |
| $150+10+3=163$ |

M07e: Jumpounsonpoe $\begin{aligned} & \quad 636 \\ & +10 \quad 63.4 \\ & -100-5.34 \\ & -1000 \quad 0.634 \end{aligned}$

MD3ba Holving Holf of 5.84 $\begin{aligned} 2.5+0.4 & +0.02 \\ & =2.92 \end{aligned}$	MD5en Dhaslen a.I rootien tef $19=19+3=$ 要 $=2 \frac{!}{4}$
MD3f: Halving \qquad	MD5f: DAluten a. Iroction $\frac{1}{1}$ ef $9=9+12=\frac{8}{1}=\frac{3}{4}$

MD6e Find the Hand!
$18+1.5=12$
$15 \cdot 3$
$10 \cdot 2=-15$
10 $|$

22
\square

CPA \& Informal Written Methods / Mental Jottings

The 2014 Curriculum for Mathematics sets out progression in the compact written methods of calculation for each of the four operations.
It also places some emphasis on the need to 'add and subtract numbers mentally' (Years 2 \& 3), mental arithmetic 'with increasingly large numbers' (Years 4 \& 5) and 'mental calculations with mixed operations and large numbers' (Year 6).

There is very little guidance, however, on the 'jottings' and informal methods that support mental calculation, and which provide a clear link between answering a calculation entirely mentally (without anything written down) and completing a formal written method with larger numbers.

Although the 2014 Curriculum, as mentioned previously, also advocates the Mastery / CPA (Concrete - Pictorial - Abstract) approach to teaching calculation, it again gives almost no guidance as to what this approach would look like in the classroom.
This policy, for all four operations, provides very clear guidance not only as to the development of formal written methods, but also: -

- some of the key concrete materials and apparatus that can be used in the classroom to support visualisation and depth of understanding for many of the calculation methods
- the jottings, expanded \& informal methods of calculation that embed a sense of number and understanding before column methods are taught.
- A wide range of mental arithmetic strategies, not only for the more 'natural' addition and multiplication methods, but also subtraction and division.
These valuable strategies include:

Addition:

Concrete Materials

Partitioning

Expanded Methods

Number Lines
(In addition to the 6 key mental strategies for addition - see 'Addition Progression')

Subtraction:

Concrete Materials
Number Lines (especially for counting on)
Expanded Subtraction (In addition to the 6 key mental strategies for subtraction - see 'Subtraction Progression')

Multiplication:

Concrete Materials

Number Lines

Partitioning

Expanded Method

Grid Method
(In addition to the 10 key mental strategies for multiplication (see 'Multiplication Progression)

Division:

(In addition to the 7 key mental strategies for division (see 'Division Progression')

Formal (Column) Written Methods of Calculation

The aim is that by the end of Year 5, the great majority of children should be able to use an efficient written method for each operation with confidence and understanding with up to 4 digits.

This guidance promotes the use of what are commonly known as 'standard' written methods methods that are efficient and work for any calculation, including those that involve whole numbers or decimals. They are compact \& consequently help children to keep track of their recorded steps. Being able to use these written methods gives children an efficient set of tools they can use when they are unable to carry out the calculation in their heads or do not have access to a calculator. We want children to know that they have such a reliable, written method to which they can turn when the need arises.

In setting out these aims, the intention is that schools adopt greater consistency in their approach to calculation that all teachers understand and towards which they work.
There has been some confusion previously in the progression towards written methods and for too many children the staging posts along the way to the more compact method have instead become end points. While this may represent a significant achievement for some children, the great majority are entitled to learn how to use the most efficient methods.
The challenge for teachers is determining when their children should move on to a refinement in the method and become confident and more efficient at written calculation.

The incidence of children moving between schools and localities is very high in some parts of the country. Moving to a school where the written method of calculation is unfamiliar and does not relate to that used in the previous school can slow the progress a child makes in mathematics. There will be differences in practices and approaches, which can be beneficial to children.
However, if the long-term aim is shared across all schools and if expectations are consistent then children's progress will be enhanced rather than limited.

The entitlement to be taught how to use efficient written methods of calculation is set out clearly in the National Curriculum objectives. Children should be equipped to decide when it is best to use a mental or written method based on the knowledge that they are in control of this choice as they are able to carry out all methods with confidence.

This policy does, however, clearly recognise that whilst children should be taught the efficient, formal written calculation strategies, it is vital that they have exposure to models and images (CPA), and have a clear conceptual understanding of each operation and each strategy.
The visual slides that feature below (in the separate progression documents) for all four operations have been taken from the Sense of Number Visual Calculations Policy.
They show, wherever possible, the different strategies for calculation exemplified with identical values. This allows children to compare different strategies and to ask key questions, such as, 'what's the same, what's different?'

Addition Progression

The aim is that children use mental methods when appropriate, but for calculations that they cannot do in their heads they use an efficient written method accurately and with confidence.
Children need to acquire one efficient written method of calculation for addition that they know they can rely on when mental methods are not appropriate.
To add successfully, children need to be able to:

- recall all addition pairs to $9+9$ and complements in 10;

- add mentally a series of one-digit numbers, such as $5+8+4$;
- add multiples of 10 (such as $60+70$) or of 100 (such as $600+700$) using the related addition fact, $6+7$, and their knowledge of place value;
- partition two-digit and three-digit numbers into multiples of 100, 10 and 1 in different ways.

Note: It is important that children's mental methods of calculation are practised and secured alongside their learning and use of an efficient written method for addition.

Addition Strategies

Addition Strategies

${ }^{4} \quad$ Calculation \& Vocabulary
${ }^{45}$ A1 Objects \& Pictures
\because A2 Counting On
${ }^{51}$ A3 Forwards Jump
${ }^{\text {so }}$ A4 Partitioning
${ }^{66}$ A5 Partition Jot
"A6 Part/Whole
as A7 Expanded Column
ッ A8 Column Addition

(1) Sense of Number Primary School...-

There are 8 key strategies for jottings / written addition, which support the children's understanding, and which can be developed across the year groups. These can be seen on the left hand poster, and are explained in much more detail, with specific examples outlined, in the remainder of this section on written addition.

Models of Addition

As the images above show, it is important that children are introduced to the two main models for addition using practical resources.
In EYFS this would be real objects such as footballs, shells, cakes, cars, dinosaurs etc.
In KS1 this would progress from concrete materials such as counters or cubes to pictorial models and sketches.

The two models of addition, aggregation and augmentation will develop into the two main mental / written methods of partitioning (aggregation) and counting on (augmentation).
Each of the addition models also have associated subtraction models. Aggregation is the inverse of subtraction by partitioning, while augmentation is the inverse of subtraction by reduction.

Aggregation

In simplistic terms, aggregation involves 2 separate groups that are combined to give an 'aggregate' total. E.g. There are 7 cakes in the first box and 5 cakes in the second box. How many cakes are there altogether?

$$
7+5=12
$$

Sometimes the two amounts can remain separate, as with the example above.
Sometimes they can be brought together, as with the example below

Aggregation

In the 'story' on the left, there are 5 boys and 3 girls in a group, making 8 children altogether.

The two parts are ' 5 ' and ' 3 ', the whole is ' 8 '

Augmentation

Augmentation, however, involves adding on to an existing group. E.g. There are 7 cakes in a box. My friend gives me 5 more cakes. How many cakes do I have now?

$7+5=12$

In the example above, an initial group of 7 cakes has been increased by 5 .
In the example below, there were 5 children then 3 more joined them.

Both of these principles are explored in the actual written calculation policy below.

Written Methods of Addition - Finding The Total

Stage 1	Aggregation (Part-Whole Method How many altogether?)	Augmentation (Counting On / Increasing the amount)
FS/Y1	Initially, children need to represent addition using a range of different resources and understand that a total can be found by counting out the first number, counting out the second number then counting how many there are altogether.	
	A1: Objects a Pictures and 0 $3+5=8$	3 (held in head) then use fingers to count on 5 ("3... 4,5,6,7,8)
	This will quickly develop into placing the largest number first, either as a pictorial/ visual method or by using a number line. be delayed until the children are compleuld be delayed until the children are completely secure in their understanding of $5+3$. Otherwise it becomes a tool that limits their understanding of what they are actually representing The word problem is also aggregation although the image can be used for augmentation as well.	A2: Counting On 5 (held in head) then count on 3 ("5 ... 6, 7, 8")

	MA4a: Counting On	The 'Egg Box' / 'Ten Frame' image is also an excellent visual tool to support augmentation
		Before moving onto jottings or written methods (for any calculation), children need to be shown a wide range of images that support their understanding. For simple calculations, the 'equals' sign can be viewed as a way to show the total (egg boxes, cubes, footballs, fingers) but also as a 'balance' (Balance scales, peg balance), where 5 and 3 have a value that is equal to / the same as, or that balances 8.
171/2	When bridging through 10, a calculation can be seen as a straightforward 'count on' (see number line \& 100 square images), a balance image as before (see balance \& number bond diagram) but, more importantly as a strategy where the ' 5 ' is partitioned into 2 and 3 (Numicon, multi-link and Tens Frames). In effect, for these images / strategies, the calculation is being re-written as $8+5=(8+2)+3=10+3=13$	When developing the concrete picture into a jotting the number line can be used to display the 'count on' $(8+1+1+1+1+1)$ or the partition $(8+2+3)$. Once this image is secure, the same strategies can be done mentally: 8 (in head) then count on 5 $\begin{gathered} (" 8 \ldots 9,10,11,12,13 ") \\ \text { Or " } 8+2=10 \ldots \\ 10+3=13) . \end{gathered}$

The next step is to bridge through a multiple of 10 . The models and images show different ways to find the total or balance the equation.
100 square \& number rods show counting in 1s
Tens Frames show a balanced equation created by passing some counters from the 6 to the 57.

Base 10 is used to show partitioning. The 1 s have been set out Tens Frame style to visualise how the 5 s can be combined to make a 10.

Again, the number line jotting can display counting on
$(57+1+1+1+1+1+1)$ or
partitioning $(57+3+3)$
This picture then becomes the mental strategies: -
57 (in head) - count on 6
("57, 58,59,60,61,62,63")
Or
$" 57+3=60 \ldots 60+3=63)$

The number line shows how to keep one number whole, whilst partitioning the other number. Firstly, add the tens then the ones individually

$$
(43+24=
$$

$43+10+10+1+1+1+1)$
before counting on in tens and ones

$$
(43+20=63 \text {.. }
$$

$$
63+4=67)
$$

	The most crucial element of teaching addition is to ensure that the children have a 'picture' of partitioning and exchanging / regrouping, meaning that they can visualize the calculation before moving to written / column procedures. This needs to be done practically many times before showing the 'method' in a column. The example above shows how both Base 10 and Place Value Counters can be used to introduce the principle of addition in a column. The numbers themselves $(43+24)$ would usually be added mentally, but you would always introduce the column method process with simple numbers. See 'column method' section for further examples of column addition using concrete materials to embed understanding.	
	The next stage is to develop both methods to crossing the 10s, then 100s boundary	
	Even as the calculations increase in value, and start to deal with exchanging, it is important that they are initially visualised via a range of resources / images. Using either Base 10 or place value counters, calculations which involve exchanging can be demonstrated. Note the layout of the resources in Tens Frame style so that it is much easier to see	A3a: Forwards Jump $57+25=82$ By this stage the number line no longer counts in individual 10s \& 1s. $\begin{gathered} 57+20=77 \ldots \\ 77+5=82 \\ 86+40=126 \ldots \end{gathered}$

	the five 1 s from the 57 added to the five 1 s from the 25 to make an extra 10. $126+8=134$ A3b: Forwards Jump $\mathbf{8 6}+48=134$
179/4	For some children, the number line method can still be used for 3-digit calculations. $\begin{aligned} & 687+200=887 \ldots \\ & 887+40=927 \ldots \\ & 927+8=935 \\ & \text { Or } 687+200+40+8=935 \end{aligned}$ A3c: Forwards Jump $687+248=935$
ME/6	A3g: Decimal Jump $5.65+3.29=8.94$ In Years 5 and 6, if necessary, children can return to the number line method to support their understanding of decimal calculation $\begin{gathered} 4.8+3=7.8 \quad 7.8+0.8=8.6 \\ \text { Or } 4.8+3+0.8=8.6 \end{gathered}$ Using number lines support children's thinking if they find partitioning / column addition difficult, as it simply involves counting on in 100s, 10s \& 1s. Hopefully, with the first calculation, many children Round \& Adjust (4.8+4-0.2=8.6)

The Part / Whole Method

As part of the 'mastery' approach to the teaching of calculation, especially addition, there are certain methods which begin visually, but which then become strategies that can either be applied mentally or as written jottings.
We have already seen the Number Line method appear in both the mental (Count On) and written sections of this document. The Partitioning method, too, as we will see later, also appears in both sections.
There is, however, an additional method, similar to the mental strategy 'Manipulate The
Calculation', which falls somewhere between mental and written methods.
This is known as the 'Part-Whole' method, and involves partitioning just one of the addends in order to create a much more simple calculation.

In 'Manipulate The Calculation', we have previously seen how $35+19$ can be simplified by partitioning 35 into $34+1$, then adding the ' 1 ' to ' 19 ' to create a new calculation of $34+20$.
The 'Part-Whole' method works in exactly the same way.

As can be seen from the Tens Frames, the calculation $8+5$ can be simplified.
By partitioning the 5 counters in the $2^{\text {nd }}$ frame into ' 2 ' and ' 3 ', and then 'passing over' the ' 2 ' to the ' 8 ', we can create a new calculation of $10+3$.
The poster on the left shows how this can be recorded as a jotting, using the part-whole model.

In Key
Stage 1, the Part-Whole method can be used to simplify calculations when adding both single digit and 2 -digit numbers to a 2 -digit number.
In the examples above, for $18+7$, the ' 7 ' has been partitioned into ' 2 ' and ' 5 ' to create $\mathbf{2 0 + 5}$.
Alternatively, the ' 18 ' could have been partitioned into ' 15 ' and ' 3 ' to create $15+10$.
For $57 \mathbf{+ 2 5}$, the ' 25 ' has been partitioned into ' 3 ' and ' 25 ' to create $\mathbf{6 0 + 2 2}$.
Alternatively, the ' 57 ' could have been partitioned into ' 52 ' and ' 5 ' to create $52+30$.

In Key Stage 2, the same strategy can be used to simplify much more complex calculations. It can be applied to 3-digit numbers and also to decimals.
For $687+248$, the ' 248 ' has been partitioned into ' 13 ' and ' 235 ' to create $700+235$. Alternatively, the '687' could have been partitioned into ' 635 ' and ' 52 ' to create $635+300$.

For $4.8+3.8$, the ' 3.8 ' has been partitioned into ' 0.2 ' and ' 3.6 ' to create $5+3.6$.
Alternatively, the ' 4.8 ' could have been partitioned into ' 4.6 ' and ' 0.2 ' to create $4.6+4$.

The Part / Whole Model can even simplify more complicated decimal calculations.
The example shows how $76.7+58.5$, which children would usually tackle with a column method, could actually be simplified quite easily if the
76.7 was partitioned into 75.2 and 1.5 .

The resulting calculation would be $75.2+60$

Stage 2	Partition Jot	Alternative Method: Traditional Partitioning
Y2/3	Traditionally, partitioning has been presented using the method on the right. Although this does support place value and the use of arrow cards, it is very borious, so it is suggested that adopting the 'partition jot' method will improve speed and consistency for mental to written (or written to mental) progression	Record steps in addition using partition, initially as a jotting: $\begin{gathered} 43+24=40+20+3+4= \\ 60+7=67 \end{gathered}$ Or, preferably
	As soon as possible, refine this method to a much quicker and clearer 'Partition Jot' approach A5: Partition Jot $43+24=67$ $60+7$	A4: Partitioning $\begin{array}{r} 43+24=67 \\ 40+20=60 \\ 3+4=\frac{7}{67} \end{array}$
	As before, develop these methods, especially Partition Jot, towards crossing the 10 s and then 100 s.	
	A5a: Partition Jot $\begin{aligned} & 57+25=82 \\ & 70+12 \end{aligned}$	A4a: Partitioning $\begin{array}{r} 57+25=82 \\ 50+20=70 \\ 7+5=\frac{12}{82} \\ \hline \end{array}$
	A5b: Partition Jot $\begin{aligned} & 86+48=134 \\ & 120+14 \end{aligned}$	A4b: Partitioning $\begin{array}{r} 86+48=134 \\ 80+40=120 \\ 6+8=\frac{14}{134} \end{array}$
Y3/4	A5c: Partition Jot $687+248=935$ $800+120+15$. This method will soon become the recognised jotting to support the teaching of partitioning	$\begin{aligned} & \text { A4c: Partitioning } \\ & 687+248=935 \\ & 600+200=800 \\ & 80+40=120 \\ & 7+8=\frac{15}{935} \end{aligned}$

	Partition jot can be easily extended to 3 and even 4 -digit numbers when appropriate. A5d: Partition Jot .	For certain children, the traditional partitioning method can still be used for 3-digit numbers, but it is probably too laborious for 4-digit numbers.
M5/6	A5g: Partition Jot Partition jot is also extremely effective as a quicker alternative to column addition for decimals.	A4h: Partitioning $4.8+3.8=8.6$ $\begin{aligned} & 4+3=7 \\ & 0.8+0.8=\frac{1.6}{8.6} \end{aligned}$ Some simple decimal calculations can also be completed this way.
	For children with higherlevel decimal place value skills, partition jot can be used with more complex decimal calculations or money.	

Stage 3	Expanded Method in Columns
Y3	Column methods of addition are introduced in Year 3, but it is crucial that they still see mental calculation as their first principle, especially for 2-digit numbers. Column methods should only be used for more difficult calculations, usually with 3-digit numbers that cross the Thousands boundary or most calculations involving 4-digit numbers and above. N.B. Even when dealing with bigger numbers / decimals, children should still look for the opportunity to calculate mentally (E.g. $4675+1998$)
	2 digit examples are used below simply to introduce column methods to the children. Most children would continue to answer these calculations mentally or using a simple jotting.
	Using columns, children need to learn the principle of adding Ones first rather than Tens.
	The 'expanded' method is a very effective introduction to column addition. It continues to use the partitioning strategy that the children are already familiar with, but begins to set out calculations vertically. It is particularly helpful for automatically 'dealing' with the 'carry' digit. It is crucial, though, to ensure practical apparatus is used first before any sort of column procedure is introduced (see egs below in the 'Column Method' section.
93/4	
	Once this method is understood, it can quickly be adapted to using with 3-digit numbers. It is rarely used for 4 digits and beyond as it becomes too unwieldy.
13/4	C. 'Carry' in Ones and Tens C. 'Carry' in Ones and Hundreds $\begin{array}{r} \text { A6: Expanded Column } \\ 1001 \\ +687 \\ +\frac{248}{15} \\ 120 \\ 800 \\ \hline 935 \\ \hline \end{array}$
	The time spent on practicing the expanded method will depend on security of number facts recall and understanding of place value. Once the children have had enough experience in using expanded addition and have also used practical resources (Base 10 / place value counters) to model exchanging in columns, they can be taken on to standard, 'traditional' column addition.

Stage Column Method

4
Y3/4
As with the expanded method, begin with 2-digit numbers, simply to demonstrate the method, before moving to 3 -digit numbers.
Make it very clear to the children that they are still expected to deal with all 2-digit (and many 3 digit) calculations mentally (or with a jotting), and that the column method is designed for numbers that are too difficult to access using these ways. The column procedure is not intended for use with 2-digit numbers unless completely necessary for certain children who have no other strategy.

'Carry' Ones then Ones and Tens

The most important part of the transition from mental and jotting approaches towards the use of column methods is the initial use of concrete materials to make / create and discuss the understanding behind the method. If children have had regular experience of using Base 10 apparatus and then Place Value Counters to make and solve calculations, (especially the regrouping of 10 'Ones' into 1 'Ten' and 10 'Tens' into 1 'Hundred') then the column method is simply a written version of what they already understand.

Allow the children plenty of opportunity to make both 2 and especially 3 digit calculations with manipulatives, in particular Base 10. Make sure that the children are encouraged to always lay out apparatus ' 5 Style' so that it is much easier to read the calculation.

For example, in $57+\mathbf{2 5}$, take note of the layout of the Ones with both the Base 10 and / or the Place Value Counters
This allows the children to see 7 Ones (as 5 Ones +2 Ones) to be added to 5 Ones. Immediately, both sets of 5 Ones can then be regrouped into 10 Ones then exchanged for 1 Ten

In $687+248$, the layout of the apparatus means that it is really easy to recognise the
6 Hundreds (500 + 100), the 8 Tens ($\mathbf{5 0}+\mathbf{3 0)}$) and the 7 Ones $(5+2)$.
This, in turn, means that the children can regroup both the 10 Ones into 1 Ten and then the $\mathbf{1 0}$ Tens into 1 Hundred straight away.

17	Once confident with place value, regrouping \& exchanging, and being able to represent and explain any 3 digit column method using apparatus, the column method can now be introduced for use with 4-digit numbers. At this point the apparatus is not necessary as the calculation procedure should be fully understood.	A7d: Column Addition $\begin{array}{r} 487 ? \\ +\frac{472}{11} \end{array}$ - \qquad \qquad
Y5/6	In Years 5\&6, extend column methods to and then to a wide rang Even with decimals, it makes sense to emb encouraged to use Decimal Place Value Co making it completely visual. This will also behind the calculation. They will need to des when the children are exchanging	calculations involving 5 \& 6 digit numbers, of decimal calculations the CPA approach first, where children are ters to create and practice the calculation by volve explaining the place value principles scribe the method and explore what occurs regrouping tenths and hundredths

A7e: Column Addition
787567
+446278
$\frac{1233845}{11} \frac{1}{1}$

A7g: Column Addition

If children make repeated errors at any stage of column addition, they can return to the expanded method, an earlier jotting or to the use of manipulatives such as Base 10 or Place Value Counters.

The key skill in upper Key Stage 2 that needs to then be developed, usually in Year 6, is the laying out of the column method for calculations with decimals in different places.

Subtraction Progression

The aim is that children use mental methods when appropriate, but for calculations that they cannot do in their heads they use an efficient written method accurately and with confidence.

To subtract successfully, children need to be able to:

- recall all addition and subtraction facts to 20;
- subtract multiples of 10 (such as 160 - 70) using the related subtraction fact (e.g. 16-7), and their knowledge of place value;
- partition two-digit and three-digit numbers into multiples of one hundred, ten and one in different ways (e.g. partition 74 into $70+4$ or $60+14$).

Note: It is important that children's mental methods of calculation are practised and secured alongside their learning and use of an efficient written method for subtraction.

Reading Subtraction Calculations / Common Misconceptions

It is fairly common for children (and teachers) to view every subtraction in one simplistic way as a 'take away'. Even when reading subtraction calculations such as $42 \mathbf{- 3 8}$ the most common way in which it is read aloud would be ' 42 take away 38 '.
This way of reading subtraction calculations can cause many problems, both in understanding what subtraction actually means, and also in choosing the best method of actually completing the calculation.

Using the example cited, $42-38$, although we could count back 30 then count back 8 from 42 (with or without a number line), and might even count out 42 items then remove 38 of them (Base 10 or real life objects), the easiest / most efficient way to solve the calculation would be to 'count on' 4 from 38 to 42 (or simply to recognise the difference of 4). If we read the calculation as 'take away' then we are implying that this is the strategy that should be chosen.

Therefore, it is vital that everybody, both teachers and children, are encouraged / persuaded to read all calculations using the correct language ('42 subtract 38 ', ' 42 minus 38 ' or 'What is the difference between 42 and 38 ?') and then allow the person answering the question the opportunity to choose the most appropriate strategy (Count on or count back)

As can be seen in the later parts of this section, the 'count on' approach is usually demonstrated via the use of a number line or jotting, whilst the 'removing items / take away ' approach is explored using Real Life Objects, Generic Concrete Materials, Base 10 apparatus and Place Value Counters (as with addition) to allow visualisation and understanding of the exchanging / regrouping principles.

NOTE: Children should always look at the actual numbers each time they see a calculation and decide whether or not their favoured method is most appropriate (e.g. If there are zeroes in a calculation such as 406-178) then the 'counting on' approach may well be the best method in that particular instance), even if they would normally use a column procedure.
Therefore, when subtracting, whether mental or written, children will mainly choose between two main strategies to find the difference between two numbers: -

Counting Back

OR

Counting On
When should we count back and when should we count on?
This will alter depending on the calculation (see below), but often the following rules apply;

If the numbers are far apart, or there isn't much to subtract (278-24) then count back.

> In many cases, either strategy would be suitable, depending on preference (743-476) close together (206-188), then count up

Models of Subtraction

Reduction

"If I had 8 footbolls and kicked 3 over the fence, how many did I have left?" "5"

$$
8-3=5
$$

"The football cost $\mathbf{\varepsilon 8}$ but I got $\mathbf{£ 3}$ off in the sales. How much did I pay? " $£ 5$ "

Comparison

"If I had 9 footballs and you had 6, how many more footballs have I got than you? "3"

"If I had 9 footballs and you had 6 , how many more would you need to buy to hove the same amount as me? "3"

Sense of Number Primary School

The poster on the previous page gives a clear overview of subtraction and allows any member of teaching staff (especially the Subject Leader) to realise that there are actually $\mathbf{3}$ key structures (and potentially 5 ways) to visualise subtraction, not just one.

Two of the ways (on the left hand side of the poster) involve the structure of reduction.
The first of these is often referred to as 'removing items' or 'taking away'
I have 7 cakes. I eat 3 of them, how many are left?
There were 7 children in the class but 3 of them went outside. How many remained?
or reducing the whole
The price of the bag of cakes cost £7. At the end of the day it was reduced by £3. How much did I
pay?).

In both of these examples we end up with 'less' than we started with, which fit in with the standardised view of subtraction as 'take away' and 'less than'

The right-hand side of the column explores the other key aspect of subtraction, that of comparison.

In a standard 'comparison' story
(I have 7 cakes and my friend has 2 cakes. How many more cakes do I have?)
or an inverse of addition story
(It costs $£ 7$ to buy the cakes, but I only have £2. How much more do I need?) there is no taking away whatsoever.
In the first example there are actually 9 cakes altogether, none of them are eaten / taken away; they are simply compared.
In the second example, there is only $£ 2$ and $£ 5$ more is needed. Despite the fact that nothing is removed, these are both clearly subtraction calculations.

The final example is neither removing items or comparing. It is a way of using subtraction to discuss the parts of a whole.

In a 'part / whole' story
There are 7 cakes in a bag, either cream cakes or chocolate brownies. 2 of them are brownies, how many are cream cakes?) nothing is taken away and nothing is added or compared. Subtraction (as with a bar model or number bond diagram) explores the two parts. If there are 7 in total and 2 of them are brownies, then 7 subtract 2 must give me the number of cream cakes.

As with addition, it is important that children are introduced to the different models for subtraction (especially 'take away' and 'compare' using practical resources.
In EYFS this would be real objects such as footballs, shells, cakes, cars, dinosaurs etc.
In KS1 this would progress from concrete materials such as counters or cubes to pictorial models and sketches.

The two main models of subtraction - 'removing items' and 'comparison', will develop into the two main mental / written methods of 'subtraction by counting back' (take away' / decomposition) and 'subtraction by counting on' ('complementary addition' / counting up on a number line).

All of these principles are explored in the actual written calculation policy below
Written Methods of Subtraction

INTR	Subtraction by counting back (or reduction)	Subtraction by counting up (or complementary addition)
	Early subtraction in EYFS will primarily be concerned with reduction, and will be modelled using a wide range of models and resources. These will usually be natural resources and real-life objects, and will ften be part of a story telling scenario where the children can 'make' subtraction to tell the story	

In Year 1, children will learn and visualize both the reduction and

partitioning (part / whole) models of subtraction

Using resources such as multi-link cubes, Numicon, Ten Frames, bead strings and pictures (like the footballs shown below) the reduction and partitioning approaches will be modelled.
Once these are secure, images such as the desktop number track / line can be used to practice practical subtraction, then developed into counting back on demarcated number lines.

In Year 1, it is also vital that children understand the concept of subtraction as 'finding a difference' by comparison and realise that any subtraction can be answered in 2 different ways, either by counting up or counting back.
Again, this needs to be modelled and

S1a: Objects and Pictures 1
 Comparing Sets

$$
7-5=2
$$

"There were 7 blue footballs and 5 red footballs? How many more blue footballs were there than red?" (What is the difference?) Sense of Number Primary School
consolidated regularly using a wide range of resources, especially multilink towers, counters and Numicon.
The images below also show the early version of bar modelling, as well as the Numicon pieces being used to demonstrate the equals sign as a balance (7 is equal to $5+$ \qquad

0

Subtraction by counting back

 (or taking away)Subtraction by counting up (or complementary addition)

Some numbers (75-37) can be subtracted just as quickly either way.
The images below show 75-37 as a Number Bond Diagram (also visualised with Place Value Counters), both as a 'count up' image using the number line (explored below in 2 different ways) and number rods, and as a take away / count back image on the 100 Square.

FThe number line itself is an excellent visual jotting for both counting on and counting back, depending on the children's preferred strategy (see below)

Either count back 30 then count back 7

S7: Backwards Jump

$75-37=38$

Or count up from smaller to the larger number, initially with a 'triple jump' strategy of jumping to the next 10 , then multiples of 10 , then to the target number.

S8: Triple Jump!

This can also be done in 2 jumps.

Some children prefer to jump in tens and ones, which is an equally valid strategy, as it links to the mental skill of 'counting up from any number in ten

S9: 10s Jump, 1s Jump!

$75-37=38$

The Part / Whole Method

As part of the 'mastery' approach to the teaching of calculation, there are certain methods which begin visually, but which then become strategies that can be applied either mentally or written.
We have already seen the Number Line method appear in both the mental (Count On \& Count Back) and written sections (Counting Back, Counting On, Backwards Jump, 10s Jump 1s Jump, Triple Jump) of this document.
There is, however, an additional method, also part of the mental strategies section of this document, which involves making the calculation easier to access. This strategy, known as the Part / Whole Method, is, in effect, an alternative way of partitioning numbers when calculating. A standard partition (similar to the partitioning method of addition) is generally not an effective method to teach, as it only works when all of the digit values in the minuend are higher than the digit values in the subtrahend.
E.g 87-23 could be worked out by partitioning ($80-20=60$ and $\mathbf{7 - 3}=4$ therefore $87-23=64$
But 83-27 could not be worked out the same way without using negative numbers ($\mathbf{8 0} \mathbf{- 2 0}=\mathbf{6 0}$ but 3-7 can't be worked out using positive numbers.
Therefore, in order to subtract by partitioning, number sense is needed, and an alternative approach needs to be deployed.
This is known as the 'Part-Whole' method, and, like addition (where either of the addends can be partitioned), the part-whole method of subtraction allows either the subtrahend (in most cases) or the minuend (when working at even greater depth) to be partitioned in order to create a much more accessible calculation.
In Key Stage 1, both approaches can be demonstrated with apparatus.

Partitioning The Subtrahend

For the calculation $13-5$, rather than counting back (or removing) 5, the subtrahend can be partitioned into 3 and 2, as the pictures below show. We begin with 13 in 2 Tens Frames (a)
a)

b)

First (b), we subtract 3 from the second Ten Frame, then subtract 2 from the first Ten Frame. As a part-whole 'jotting', the calculation would be written

$13-5$	$=8$
(3)	$13-3=10$
$10-2$	$=8$

This approach links to the number line method explored earlier for 75-7, where the minuend was partitioned into 5 and 2, and basically gives an different layout without the need to draw a line.

Partitioning The Minuend

The alternative approach to the Part-Whole method, which generally takes a little longer for the children to use and understand effectively, is to partition the minuend instead and subtract the subtrahend from the larger part.
As the pictures show, we again begin with 13 in 2 Tens Frames (a)

In this instance (b), we subtract the 5 from the first Tens frame, and then we clearly see the remaining difference is 8.
As a part-whole 'jotting', the calculation would be written

The slides below demonstrate how the part-whole method can be developed throughout the whole school, using both approaches.

Partitioning The Subtrahend

The calculation 75-37 can be simplified if the subtrahend of 37 is partitioned into 35 and 2. The 35 is subtracted from the 75 (equalling 40)

Partitioning The Minuend

Alternatively, the minuend of 75 can be partitioned into 40 and 35.
The 37 is then subtracted from the 40
before the $\mathbf{2}$ is subtracted from the $\mathbf{4 0}$, giving an overall difference of 38 .
(equalling $\mathbf{3}$) and the $\mathbf{3}$ is added to the remaining 35, also giving an overall difference of 38 .

Both methods continue into Key Stage 2, and can be used to subtract either 2 or 3 digit numbers.

In the example above, the subtrahend of 56 is partitioned into 32 and 24 so that the $\mathbf{3 2}$ can be simply subtracted from 132, leaving 100. The remaining 24 is then subtracted from 100, giving a difference of 76 .

Partitioning the minuend of 132, however, into 62 and 70, means that the 56 can be subtracted from 62 (equalling 6) The $\mathbf{6}$ is then added to the $\mathbf{7 0}$, again giving an overall difference of 76 .

For 3-digit calculations, the same principles apply.
Either the subtrahend or minuend can be partitioned in order for the calculation to be simplified.

The slide above shows that 356 needs to be subtracted From 723. If the $\mathbf{3 5 6}$ is partitioned into 323 and 33 then the 323 can easily be subtracted from 723. This leaves 400 , from which the 33 is then subtracted, giving a final difference of 367 .

If, instead, we partition the minuend of 723 into $\mathbf{4 0 0}$ and $\mathbf{3 2 3}$ then the $\mathbf{3 5 6}$ can be subtracted from 400 (equalling 44) The 44 is then added to the 323, giving an overall difference of 367

The two approaches even work with decimals. Partitioning

Partitioning the minuend of 13.4 into 9 and 4.4 the subtrahend of 8.7 into 8.4 and 0.3 means that 8.4 can be easily subtracted from 13.4 (equalling 5) If we then subtract 0.3 from the 5 , the overall difference is 4.7
allows the 8.7 to be subtracted from the 9 . This 0.3 can then be added to the 4.4, again giving an overall difference of 4.7

Stage 2 Expanded Method \& Number Lines (continued)

Subtraction by counting back

 Expanded MethodSubtraction by counting up Number Lines (continued)

In Year 3, according to the New Curriculum, children are expected to be able to use both jottings and written column methods to deal with 3 -digit subtractions.
This is only guidance, however - as long as children leave Year 6 able to access all four operations using formal methods, schools can make their own decisions as to when these are introduced.
It is very important that they have had regular opportunities to use the number line 'counting up' approach first (right hand column below) so that they already have a secure method that is almost their first principle for most 2 and 3 -digit subtractions.

This means that once they have been introduced to the column method they have an alternative approach that is often preferable, depending upon the numbers involved.
The number line method also gives those children who can't remember or successfully apply the column method an approach that will work with any numbers (even 4-digit numbers and decimals) if needed.
It is advisable to spend at least the first term in Year 3 focusing upon the number line / counting up approach as a jotting through regular practice, while resources such as Base 10 are being used to explore decomposition practically. The column method can then be introduced in the $2^{\text {nd }} / 3^{\text {rd }}$ term once the understanding is secure.
Ideally, whenever columns are introduced, the expanded method should be practiced in depth (potentially up until 4-digit calculations are introduced). This should be done firstly with apparatus to build up a visual picture, and then gradually developed into the column procedure.
The expanded method of subtraction is an excellent way to introduce the column approach as it maintains the place value and is much easier to model practically with place value equipment such as Base 10 or place value counters.

Introduce the expanded method with 2-digit numbers, but only to explain the process.
Column methods are very rarely needed for 2-digit calculations.

Give the children ample opportunity to extend their place value skills into column subtraction
by 'making' the calculation and explaining the process before writing it down.

Partition both numbers into tens \& ones, firstly with no exchange then exchanging from tens to ones.

Make sure that children are explaining the process of exchanging / regrouping whilst using the materials. Give them many opportunities to take the 1 Ten and exchange / regroup as 10 Ones before writing this down in expanded form.

S7: Triple Jumpl

S7a: Triple Jumpl

B	Move towards exchanging from hundreds to tens and tens to ones, in two stages if necessary. Use practical apparatus first at all times, especially when dealing with 3 -digit calculations.	The example below shows 2 alternatives, for children who need different levels of support from the image.
		As before, many children prefer to count in hundreds, then tens, then ones.
	For examples where exchanging is needed, then the number line method is equally as efficient, and is often easier to complete	S9c: 100s, 10s, 1s Jump $723-356=367$

Stage 3 Standard Column Method (decomposition)

Subtraction by counting back
Standard Method

Decomposition relies on secure understanding of the expanded method, and simply displays the same numbers in a contracted form.

	As with expanded method, and using practical resources such as place value counters to support the teaching, children in Years 3 or 4 (depending when the school introduces the column procedure) will quickly move from decomposition via 2-digit number 'starter' examples to 2 / 3 digit and then 3-digit columns. (S11: Column Subtraction) (S11: Column Subtraction)	
	SII: Column Subtraction	
	Again, use examples containing zeros, remembering that it may be easier to count on with these numbers (see Stage 2)	

	S11x: Column Subtroction 	
17	From Y4 onwards, move onto examples using 4-digit (or larger) numbers and then onto decimal calculations. If necessary, apparatus can still be used to demonstrate the exchange / regroup principle. Slld: Column Subtraction	 It is even possible, for children who find column method very difficult to remember, or who regularly make the same mistakes, to use the number line method for 4 digit numbers, using either of the approaches

Y5/6	$\begin{aligned} & \text { In Years } 5 \& 6 \text { apply to examples which use } \\ & 6 \text { or } 7 \text { digit numbers } \\ & \left\lvert\, \begin{array}{c} \text { Slle: Collumn Subtraction } \\ 7^{3} 1^{1} 8^{12} 8^{1} \\ =427358 \\ \hline 315473 \\ \hline \end{array}\right. \end{aligned}$	
Both methods can be used with decimals, although the counting up method becomes less efficient and reliable when calculating with more than two decimal places.		
		S9f: is Jump, Tenths Jump! $13.4-8.7=4.7$ S7: Decimal T-JII
		S8x2: Decimal T-J! $72.43-47.85=24.58$

with calculations to 2 decimal places, practical apparatus can be used initially to explore / embed understanding or at a later stage for the children to demonstrate greater depth. In these instances, they can recreate a column method with decimals and explain each stage of the procedure.

SIIg: Column Subtraction

$101 \cdot \frac{1}{10} \frac{1}{100}$

Multiplication Progression

The aim is that children use mental methods when appropriate, but for calculations that they cannot do in their heads they use an efficient written method accurately and with confidence.

These notes show the stages in building up to using an efficient method for

- 2-digit by 1 -digit multiplication by the end of Year 3,
- 3 -digit by 1 -digit multiplication by the end of Year 4,
- 4-digit by 1 -digit multiplication and $2 / 3$-digit by 2 -digit multiplication by the end of Year 5
- 3/4-digit by 2 -digit multiplication and multiplying 1 -digit numbers with up to 2 decimal places by whole numbers by the end of Year 6.

To multiply successfully, children need to be able to:

- recall all multiplication facts to 12×12;
- partition numbers into multiples of one hundred, ten and one;
- work out products such as $70 \times 5,70 \times 50,700 \times 5$ or 700×50 using the related fact 7×5 and their knowledge of place value;
- similarly apply their knowledge to simple decimal multiplications such as $0.7 \times 5,0.7 \times 0.5,7$ $x 0.05,0.7 \times 50$ using the related fact 7×5 and their knowledge of place value;
- add two or more single-digit numbers mentally;
- add multiples of $\mathbf{1 0}$ (such as $\mathbf{6 0 + 7 0}$) or of $\mathbf{1 0 0}$ (such as $\mathbf{6 0 0 + 7 0 0) ~ u s i n g ~ t h e ~ r e l a t e d ~ a d d i t i o n ~}$ fact, $6+7$, and their knowledge of place value;
- add combinations of whole numbers using the column method (see above).

Note:

Children need to acquire one efficient written method of calculation for multiplication, which they know they can rely on when mental methods are not appropriate.
It is important that children's mental methods of calculation are practised and secured alongside their learning and use of an efficient written method for multiplication.
These mental methods are often more efficient than written methods when multiplying.
Use partitioning and grid methods until number facts and place value are secure

For a calculation such as 25×24, a quicker method would be 'there are four 25 s in 100 so $25 \times 24=100 \times 6=600$

When multiplying a 3 / 4 digit x 2-digit number the standard method is usually the most efficient

> At all stages, use known facts to find other facts. E.g. Find 7×8 by using 5×8 (40) and 2×8 (16)

The poster above shows the two images for multiplication which are used within the Visual Calculation Policy. As pictured, the repeated addition model can be visualised and explained in two ways (either 'Multiply by...' or 'Groups of')
The other model (Scaling) allows the children to see that multiplication is also concerned with making an amount so many times its original size (either larger or smaller)
The reasons for adopting these models are explained below: -

There are 10 key strategies for jottings / written multiplication, which support the children's understanding, and which can be developed across the year groups.
These can be seen on the right hand poster, and are explained in much more detail, with specific examples outlined, in the remainder of this section on written multiplication.

Multiplication Strategies

Sense of Nhmber Primary Sehool

Understanding Multiplication

Children are often asked to draw or make calculations in order to give them a real life context, such as the cupcakes example on the right.

One of the most difficult aspects when teaching multiplication is to ensure that it is taught consistently across the school. Due to the way that most teachers were themselves taught multiplication, there tend to be two approaches adopted across the UK.

Cakes On Plates

Represent 6×2

Draw the plates, place the cakes

Finding consistent language \& understanding

For a calculation such as 6×2, it is commonly viewed either as ' 6 lots of 2' (see Option A below) or ' 6 repeated three times' (see Option B).

6×2

Teachers in KS1 sometimes move between the two images without realising, but usually settle on one particular explanation. In other schools, there can often be a distinct variation between the model or image adopted in each year group.

In later years, too, the image / explanation taught in KS1 often conflicts with the understanding needed to visualise a higher level calculation in KS2. Therefore, it is important that the images and explanations introduced in KS1 continue to be used and developed in KS2.

Repeated addition - 'Lots of' or 'Repeat a number of times'???

Internationally, when explaining repeated addition, some countries primarily adopt the 'Groups of...' image, whilst others teach only the 'Repeat a number of times / Multiply by...' model. We are suggesting that actually both are models of 6×3, depending on your own interpretation, and it makes sense to introduce both to children as alternate ways of visualising the same calculation.

In effect '1 calculation $\mathbf{- 2} \mathbf{~ i n t e r p r e t a t i o n s ' ~ (6 x ~} 2$ is ' $\mathbf{6}$ groups of $\mathbf{2}$ ' or '6 repeated twice/multiplied by $\mathbf{2}$)

Or... '1 image $\mathbf{- 2}$ calculations' (see below)

The picture on the left could be: -
$6 \mathbf{x} 2$ (6 repeated 2 times / 6 multiplied by 2)

Or
2×6 (2 groups of 6)

This approach would also correlate to the Models of Division (Sharing or Grouping), which also use two different images to represent the same calculation.
Therefore, in a similar way to aggregation and augmentation for addition having the inverse images of partitioning and reduction for subtraction, both 'multiply by...' and 'groups of...' for multiplication will have an inverse sharing or grouping image for division.

Our policy suggests that initially the most sensible approach, when multiplication is introduced in Year 2, is to ask the children to make / create / display the calculation both ways, so that not only are they experiencing 2 ways to represent a calculation, they are also realising that multiplication is commutative. Whichever way they represent $\mathbf{6 \times 2}$ or 5×3 (or 2×6 or 3×5), they will always get the same product. Children should use a range of manipulatives, both real life (such as the footballs) or generic materials (such as cubes or number shapes). Each piece of apparatus or pictorial image (e.g. abacus or number line) can be used to show both elements of multiplication.

This reasoning would then lead perfectly into the array image, where the calculation can be displayed to show commutativity, and can be read using either interpretation.

The array shows 3×5 because it has a column of 3 multiplied by 5 / repeated 5 times.
It also shows 3 groups of / rows of 5 .

The array shows 5×3 because it has a row of 5 multiplied by 3 / repeated 3 times / trebled.
It also shows 5 groups of / rows of 3

Multiplication In Key Stage 2 -
 Should 'Groups Of...' or 'Repeat A Number Of Times...'
 Be The Default Model?

As mentioned, although both images of a multiplication calculation are valid, and should both be used in KS1, the question still remains as to which should be the 'default' method as the children progress through KS2 and are faced with more complex calculations.
We feel that to answer this, considering we are dealing with multiplication, the key question to ask is: 'Which image is actually showing 5 multiplied by 3?'

Using the 2 posters above, the first poster clearly displays 'multiply by' (ie it shows how 5×3 means 'take 5 objects then multiply the 5 objects by 3 ', showing us ' 5 three times' ' 5 multiplied by 3 , or 5 trebled Mathematically, therefore, it is a more accurate representation.

If we use the correct vocabulary and regularly say 'multiplied by' (rather than 'times') when reading a multiplication calculation, then the first set of images would be the ones which would come to mind.
For example, ' $\mathbf{1 0}$ multiplied by 4 ' would mean 10 objects (fingers on hands or beads on an abacus) repeated 4 times.

Of equal importance are the types of calculation that children are asked to deal with in KS2. The accepted, conventional way in which a calculation is written is to multiply a 2 / $3 / 4$ digit number by a single digit number, not the other way round. E.g. You would usually write 147×4, rather than 4×147.

Again, this would lead to 'multiply by' as the preferred method or way of thinking.

To explain the calculation on the left, you would say ' 147 multiplied by 4 ' and would then display 1 hundred, 4 Tens and 7 Ones, 4 times each.

It would be very inefficient to read the calculation as '147 groups of 4 ', which would require far too much apparatus and would take an extremely long time to complete.

Hence, our advised approach is to begin with both images and interpretations for a given calculation, develop understanding of commutativity, but to focus predominantly on 'multiply by' as the default interpretation for the majority of calculations in KS2.

Scaling

The other way in which multiplication can be explained correctly is through the use of scaling.
In effect, 5×3 means 5 scaled up to be ' 3 times the size'.
This interpretation is commonly used throughout Europe and means that children see a multiplication calculation and immediately picture the answer as something which has been scaled up or down in size.

This can be used with amounts (I have 5 cakes but my brother Dave has 3 times as many as me), where we actually end up with 20 cakes (not 15) on display.

Scaling is more commonly used for measurement, though, where the answer to the word problem is ' 15 ' but there aren't actually 15 objects.
For example, $\mathbf{5 \times 3} \mathbf{3}$ could be used for a word problem such as 'John has an 5cm piece of string. Louise has a piece of string which is 3 times as long. How long is Louise's string?'
In this instance there is no repeated addition or 'lots of'. Louise's string isn't 5 cm repeated 3 times and it certainly isn't 5 lots of 3 cm (although both would give the same answer if they were laid out end to end). It is a single 15 cm piece of string which is 3 times longer than John's 5 cm piece.

Scaling is also very helpful for multiplying by fractions (either way round)
E.g. $12 \times 1 / 3$ would mean 12 scaled to be $1 / 3$ of the size (i.e. 3 times smaller)
$1 / 3 \times 12$ would be $1 / 3$ made 12 times as big or $1 / 3$ repeated 12 times.
Both methods would give the correct answer of 4 .

To summarise, here are the various definitions associated with multiplication.

Stage 1 Number Lines, Arrays \& Mental Methods

EYFS	In Early Years, children are introduced to grouping, and are given regular opportunities to put natural resources and real life objects into groups of any given size They also stand in different sized groups, and use the term 'pairs' to represent groups of 2. They are expected to 'subitise' small amounts so that they can immediately recognize randomly arranged groups of 2, 3, 4 and 5 Later in the year this is developed into using more structured resources such as Ten Frames, Number Shapes, multi-link cubes or an abacus. Children use real life resources (then 5 / 10 Frames or Number Shapes) to begin to count in ones, twos, fives and tens, saying the multiples as they count the pieces. E.g. Saying ' $2,4,6,8,10$ etc' or ' 1 pair, 2 pairs, 3 pairs etc) when counting pairs of shoes Also '10, 20, 30' or ' 1 Ten, 2 tens, 3 tens' whilst counting Tens Frames / Fingers
Y1	Begin by introducing the concept of multiplication as repeated addition. Before using mathematical apparatus, use real objects and equipment such as cups, cakes, footballs, pencils, apples etc.) Children will firstly make then draw these objects in groups giving the product by counting up in 2 s , 5 s , 10 s and beyond, and finally by writing the multiplication statement. The picture above will begin as an addition 'story' Make sure from the start (as explained in the introduction to this section) that all children say the multiplication fact both ways way round, using the word 'multiply by' to interpret the above picture as 5×2 or 'groups of to interpret it as 2×5. le. There are 5 footballs in 2 groups, showing 5 multiplied by $2(5 \times 2)$, as well as 2 groups of 5 footballs (2×5)
12	The array
	(M3: Arrays) "2 groups of 5 counters" or " 5 groups of 2 counters" - "10 counters altogether" Build on children's understanding that multiplication is repeated addition, using both interpretations ('Multiply by' and 'Groups of') To do this, begin to use arrays and number lines to support their thinking. Start to develop the use of the array to show linked facts (commutativity). Make arrays with a wide range of objects, especially those which naturally occur in real-life such as windows, egg boxes, drawers or cake trays. Emphasise that all multiplications can be worked out either way $(2 \times 5=5 \times 2=10)$ as this will support the children in the future learning of their tables facts.

Even when dealing with larger tables such as the 7's and the 8's it is crucial that children can create a model or image so that they can understand what the calculation actually means

The footballs simply show 4 Sevens / 7 Fours and 9 Eights / 8 Nines as a real life picture, but the other images support children in actually either seeing the final product or understanding the calculation (and how the product is visualised) in more depth.

The Multi-link and Abacus images are especially useful as they allow the 7 times table to be seen as a combination of the 5 s and 2 s and the 8 times table as 5 s and 3 s .
E.g. the 7×4 multi-link / abacus images are colour-coded to show a 5×4 array and a 2×4 array. The 8×9 images show 3×9 and 5×9.

The Number Rod image places the $4 \mathrm{~s} / 7 \mathrm{~s} / 8 \mathrm{~s} / 9 \mathrm{~s}$ on a track to display the products 28 / 72, whilst the Numicon pieces are arranged on a Numicon 'track' to show the same product.

If the children become accustomed to using resources to support their counting, then use similar resources when displaying a visual for multiplication, they will automatically feel more confident when asked to picture / create / visualize a higher level calculation such as those later in this policy.

Extend the use of resources for 2 digit $x 1$ digit calculations so that children can visualize what the calculation looks like before they are taught any specific written methods or jottings.

As mentioned earlier in the policy, it is at this stage where we only use the 'multiply by...' interpretation of the calculation for efficiency.
'15 multiplied by 5 ' allows us to represent the calculation by showing 15 five times.
'15 groups of 5' would achieve the same answer, but would take much longer to visualize and complete

In each of the images above, 15×5 can be shown as a basic Tens and Ones partition.
(l.e. 10 multiplied by 5 and 5 multiplied by 5) but the images allow different visualisations.

The footballs are laid out like a Slavonic abacus, allowing a clear visual of all 75 footballs but in an arrangement which makes them very easy to calculate.

The Base 10 apparatus is probably the most important image, and shows how the Tens and Ones are actually partitioned within a Grid Method - 5 Tens and 5 Fives.
This is the model (along with the Place Value Counters) which the children need to 'make' most often in class so that they become accustomed to exchanging / regrouping Ones into Tens (and then Tens into Hundreds with more complex calculations)

The Place Value Counters then demonstrates how the Tens and Ones are regrouped.
Twenty of the Ones are exchanged / regrouped into 2 Tens, giving 7 Tens and 5 Ones.

The Grid Method (covered in detail later) and number line (see below) are also pictured on the poster, and are very helpful jottings that allow children to quickly show their strategy.

Once the general models and images for multiplication are secure, begin to partition the 2 digit number using jottings and number lines.
Extend the methods above to calculations which give products greater than 100.

Use of 'Grid' Method within the 2014 Curriculum

In the 2014 Curriculum, the Grid Method is not exemplified as a written method for multiplication. The only methods specifically mentioned are column procedures.

Most schools in the UK, however, have effectively built up the use of the grid method over the past 20 years, to the extent that it is generally accepted as one of the most appropriate 'written' methods for simple 2 and 3 digit x single digit calculations (short multiplication).

It develops clear understanding of place value through partitioning as well as being an efficient method, and is especially useful in Years 4 and 5.

Consequently, grid method is a key element of this policy, but, to align with the 2014 Curriculum, is classed as a mental 'jotting'. It builds on partitioning, and is also the key mental multiplication method used by children in KS2 (pg. 44 - Multiplication Partitioning)

M5a: Grid Method
Short Multiplication
$43 \times 6=258$

$240+18=258$
M5b: Grid Method Short Multiplication
$147 \times 4=588$

x	100	40	7
4	400	160	28

$400+160+28=588$

The examples above show the development of grid method from a straightforward 2 digit $\times 1$ digit calculation with a product below $100(15 \times 5)$ to a more complex version (43×6) and then a 3 digit $x 1$ digit calculation (147 x 4). In each example the partitioning / place value link is very clear.

The Grid Method is equally as efficient as column method for almost all 2 digit $\times 2$ digit calculations, providing an excellent basis and security for simple examples of long multiplication.
Many children who find the column procedure difficult when faced with long multiplication are far more successful with the Grid Method, which builds on all of the place value and partitioning work developed earlier.

M8: Grid Method
Long Multiplication
$43 \times 65=2795$

x	40	3
60	2400	180
5	200	15

$2400+180+200+15=2795$

Column procedures still retain some element of place value, but, particularly for long multiplication, tend to rely on memorising a 'method', and can lead to many children making errors with the method (which order to multiply the digits, when to 'add the zero', dealing with the 'carry' digits' etc.) rather than the actual calculation.
In these instances, children will continue to use the grid method

Once the calculations become more unwieldy (4 digit $\times 1$ digit or $3 / 4$ digit $\mathbf{x} 2$ digit such as the calculation on the right) then grid method begins to lose its effectiveness, as there are too many zeroes and part products to deal with.

At this stage column procedures are far easier, and, once learnt, can be applied much quicker.
Grid methods can still be used by some pupils who find columns difficult to remember, and who regularly make errors, but children should be encouraged to move towards columns for more complex calculations

Stage 2 Written Methods - Short Multiplication

Grid Multiplication (Mental 'Jotting')

Column multiplication
(Expanded method into standard)

$1 ?$	The grid method of multiplication is a simple, alternative way of recording the partitioning jottings shown previously. As shown earlier, it can initially be taught using an array to show the actual product	The expanded method links the grid method to the standard method. It still relies on partitioning the tens and units, but sets out the products vertically. Children use the expanded method until they can securely use and explain the standard method. (M6:
	exactly what it actually means	When teaching both expanded and then standard method, always allow the children time to visualise the calculation stages using Base 10
		Once Base 10 understanding is secure then begin to use place value counters to represent the same calculations

	It is recommended that the grid method is used as the main method within Year 3. It clearly maintains place value, and helps children to visualise and understand the calculation better. M5: Grid Method $15 \times 5=75$ $50+25=75$	At some point within the year, the column method can be introduced, and children given the choice of using either grid or standard. Some schools may delay the introduction of column method until Year 4
	It is important to continue adopting the CPA ap complex 2 digit x 1 digit calculations. E.g. Using Base 10 apparatus, children can de and 3 Ones repeated 6 times. They can actu then exchange / regroup 20 Tens into 2 Hu They can also explore and explain the column Ones first then exchanging for a Ten (and put the $\mathbf{2 0}$ Tens and exchanging them for $\mathbf{2}$ Hu As before, place value counters can then be used to help explain the column method in a slightly more abstract way, but one which still maintains a secure understanding of the underlying concepts.	pproach by making and explaining the more emonstrate 43×6 as 4 Tens repeated 6 times ally display this image within a Grid Method and undreds and 10 Ones into 1 Ten. method using Base 10, this time regrouping the putting it in the Tens column) before regrouping undreds (which are put into the Hundreds column)

$\sqrt{7}$	Continue to use both grid and column methods in Year 4 for more difficult 2 digit $\mathbf{x} 1$ digit calculations, extending the use of the grid method into mental partitioning for those children who can use the method this way and can simply jot down the sub products and answer. At this point, the expanded method can still be used when necessary (to help 'bridge' grid with column), but children should be encouraged to use their favoured method (grid or column) whenever possible.
	Using apparatus for 3 digit $\mathbf{x} 1$ digit calculations is an excellent way to continue developing the conceptual understanding of what the calculations look like and the actual size of the number that is being manipulated. In the first example displayed, children can create $100 \times 4,40 \times 4$ and 7×4 using Base 10, then show how the 16 Tens can be regrouped then exchanged / into 1 Hundred and 6 Tens, while the 28 Ones can be regrouped then exchanged into 2 Tens and 8 Ones. In the examples below, Base 10 and Place Value Counters are used to show the step-by-step process involved in a column method, beginning with the 7 Ones being multiplied by 4 then regrouped / exchanged (with the 2 Tens being placed in the Tens column). This is followed by the 4 Tens being multiplied by 4 and regrouped / exchanged (with the 1 Hundred being placed in the Hundreds column). Finally the 1 Hundred is multiplied by 4 and the 5 Hundreds are totalled.

For 3 digit $\mathbf{x} 1$ digit calcualtions, both grid and standard methods are efficient.
Continue to use the grid method to aid place value and mental arithmetic. Use column method for speed, and to make the transition to long multiplication easier. If both methods are taught consistently then children in Year 4 will have a clear choice of $\mathbf{2}$ secure methods, and will be able to develop both accuracy \& speed in multiplication.

Sometimes children find the multiplication and place value parts of Grid Method to be fairly simple, but then struggle with the actual addition at the end (see $1^{\text {st }}$ example above). In these instances, encourage them to complete the addition using a column method (see 2nd example above)

Expanded method can still be used for children who need extra support with place value (and as a 'bridging' method between grid and column procedures)
Once this is secure then they can practice the speed and security of the column method, but ensuring they can still explain the place value (using apparatus if necessary) when required

For a 4 digit x 1 digit calculation, the column method, once mastered, is quicker and less prone to error.
The grid method may continue to be the main method used by children who find it difficult to remember the column procedure, or children who need the visual link to place value.

Stage 3

 Long Multiplication (TU x TU)
Grid Multiplication

Column multiplication

 (Expanded method into standard)

Even a simple long multiplication calculation can be displayed visually using an array set out in a Slavonic Abacus arrangement. The image on the poster shows a straightforward away to quickly see all 180 counters
At this stage, using Place Value Counters rather than Base 10 enables the calculation to be created more efficiently.

Extend the grid method to TU $\times \mathrm{TU}$, asking children to estimate first so that they have a general idea of the answer. (43×65 is approximately $40 \times 70=2800$.)

As mentioned earlier, grid method is often the 'choice' of many children in Years 5 and 6, due to its ease in both procedure and understanding / place value and is the method that they will mainly use for simple long multiplication calculations.

Children should only use 'standard' column method for long multiplication if they can regularly get it correct using this method.

There is no 'rule' regarding the position of the 'carry'digits.
Each choice has advantages and complications. Either carry the digits mentally or have your own favoured position for these digits.

Most children, at this point, should be encouraged to choose the standard method. For 3 digit $x 2$ digit calculations it is especially efficient, and less prone to errors when mastered.

Although they may find the grid method easier to apply, it is much slower / less efficient.

M8b: Grid Method				
$203 \times 68=13,804$				
\mathbf{x}	200	0	3	
60	12000	0	180	$=12,180$
8	1600	0	24	$=1,624$
12180 + $1624=13,804$				

The Grid Method is an interesting way to show the part products that are created when multiplying with a 3 digit number with no Tens (or Zero in the Tens place).
The 4 parts are either very large (12000\&1600) or quite small (180\&24). As the method shows 6 parts altogether, it is clear that 2 of them are not used.

The column method shows the same overall product as the Grid Method $(13,804)$
It doesn't, however, appear to be any different to a regular 3 digit $\times 2$ digit calculation as the display simply shows the 2 part products created when multiplying by 68

Even when multiplying decimals, Place Value Counters can be used first in order to visualise the calculation before progressing onto Grid and Column Methods

Many children will find the use of Grid method as an efficient method for multiplying decimals. They must also practice mental partitioning for decimal calculations such as the one above.

Extend column method into decimal multiplication. It is advisable to set out the columns as shown above so that the place value remains secure. It is also helpful in showing how many digits will need to be displayed after the decimal point.

Even when the calculations become quite complex, Place Value Counters allow an instant visualisation, not only of the actual calculation but also of the exchanging / regrouping which needs to take place. This can really help to secure decimal place value within the calculation. Ask the children to make the calculation using Place Value Counters, and explain the procedure in stages before moving to column method.

M6	M8d: Decimal Grid $47.2 \times 3=141.6$	M9d Column Multiplication $\begin{array}{r}100101 .{ }^{10} \\ 4 \\ \hline\end{array}$ $\frac{\frac{x 3}{141.6}}{2}$
		M9e:Column Multiplication In the examples above, continue to think carefully about the layout of the calculation, keeping the place value accurate when multiplying
		M9f: Long Multiplication
	At this point children can use either standard method or grid method, but the column procedue tends to be more efficient.	
		By the time children meet 4 digits by 2 digits, the only efficient method is the standard, column method for Long Multiplication.

Division Progression

The aim is that children use mental methods when appropriate, but for calculations that they cannot do in their heads they use an efficient written method accurately and with confidence.

These notes show the stages in firstly developing clear understanding of division (including simple whole number remainders) through grouping and sharing, building up to written procedures. Unlike addition,
 subtraction and multiplication, there are no column methods, but we will explore both traditional written division (the 'bus stop' method) and 'chunking', firstly using short division 2 digits $\div 1$ digit, extending to $3 / 4$ digits $\div 1$ digit, then finally exploring long division of 4 / 5 digits $\div 2$ digits.

To divide successfully in their heads, children need to be able to:

- understand and use the vocabulary of division - for example in $18 \div 3=6$, the 18 is the dividend, the 3 is the divisor and the 6 is the quotient;
- partition two-digit and three-digit numbers into multiples of 100, 10 and 1 in different ways;

For example, without a clear understanding that 72 can be partitioned into 60 and 12, 50 and 22, 40 and 32 or 30 and 42 (as well as 70 and 2), it would be difficult to divide 72 by 6, 54 or 3 using the 'chunking' method.
$72 \div 6$ 'chunks' into 60 and 12
$72 \div 5$ 'chunks' into 50 and 22
$72 \div 4$ 'chunks' into 40 and 32
$72 \div 3$ 'chunks' into 60 and 12 (or 30, 30 and 12)

- recall multiplication and division facts to 12×12, recognise multiples of one-digit numbers and divide multiples of 10 or 100 by a single-digit number using their knowledge of division facts and place value;
- know how to find a remainder working mentally - for example, find the remainder when 48 is divided by 5 ;
- understand and use multiplication and division as inverse operations.

Children need to acquire one efficient written method of calculation for division, which they know they can rely on when mental methods are not appropriate.

Note: It is important that children's mental methods of calculation are practised and secured alongside their learning and use of an efficient written method for division.

To carry out written methods of division successfully, children also need to be able to:

- visualise how to calculate the quotient by visualising repeated addition;
- estimate how many times one number divides into another - for example, approximately how many sixes there are in 99, or how many 23s there are in 100; (to do this children must again be able work comfortable with simple multiples of the divisor)
- multiply a two-digit number by a single-digit number mentally; (Check out the wide range of mental division processes from Page 68 onwards)
- understand and use the relationship between single digit multiplication, and multiplying by a multiple of 10.
E.g. $\mathbf{4 \times 7 = 2 8}$ so $4 \times 70=280$ or $40 \times 7=280$ or $4 \times 700=2800$

This will lead to $28 \div 7=\mathbf{4}$ so $280 \div 7=40$ or $2800 \div 4=700$

- subtract numbers using the column method (if using the NNS 'chunking' method)

The above points are crucial. If children do not have a secure understanding of these prior-learning objectives then they are unlikely to divide with confidence or success, especially when attempting the 'chunking' method of division.
N.B. Please note that there are two different 'policies' for chunking, both of which are outlined and explained within this document.

Chunking Option 1: National Numeracy Strategy Model:

The first would be used by schools who have continued to adopt the NNS model. This model was part of the curriculum for 15 years but was never embraced to the same level as the grid method of multiplication or the number line method of subtraction. Many schools found NNS chunking to be 'unwieldy' and very difficult for children to memorise, even though it was based on clear mathematical principles. There were often too many stages to 'chunking' and only children with a very secure knowledge of tables and a strong sense of number were able to use it consistently and accurately. It does, however, provide an alternative approach to long division which some children favour.

Models of Division

The poster above clearly shows that division can be viewed in two entirely different ways.

A calculation such as $15 \div 3$ can mean one of two things: -
' 15 shared between 3 or 'How many 3s in 15?'

As the images show, if there are 15 footballs then they can be shared equally between 3 bags (with 5 in each bag) or groups of 3 footballs can be put into each bag (with there being 5 bags).

If the question is in a word problem format then the interpretation is specified, but if it is simply an abstract calculation then children can choose either meaning in order to answer the question.

It is crucial that children's early experiences of division allow them to model, demonstrate, explain, draw and practice answering division calculations using both interpretations.

They should be given calculations such as $20 \div 5,16 \div 2,12 \div 4$ and $30 \div 10$, and asked to solve them practically then pictorially using both methods. Resources such as counters, cubes, pencils, balls, food, toys etc can be shared or grouped so that division is not seen as an abstract concept.

This means that they will always have two options open to them for any given division, allowing them to use tables facts and grouping for certain calculations, and equal sharing for others.

They will also realise that, in a similar way to subtraction (counting on or counting back), they aren't restricted to a single method or strategy.

There are 14 key strategies for jottings / written multiplication, which support the children's understanding, and which can be developed across the year groups.
These can be seen on the left hand poster, and are explained in much more detail, with specific examples outlined, in the remainder of this section on written multiplication.

Division In Key Stage 1 Should Grouping or Sharing Be The Default Model?

When children think conceptually about division, their default understanding should probably be Division is Grouping, as this is the most efficient way to divide and is the principle which is most commonly used in Key Stage 2.

The most common principle explored with children in KS1, however, is usually that of sharing. This 'traditional' approach to the introduction of division is to begin with 'sharing' as it is seen to be more 'natural' for children to demonstrate, and is viewed as being easier to understand.

Many children see the division symbol and are encouraged to recognise it as the 'share' sign. Whilst this is one interpretation, it is absolutely crucial that it is never called the share sign.

The division symbol should always be given the name 'divide' and, as mentioned, be taught as both sharing and grouping

Children who are only given the 'sharing' interpretation of division often spend the majority of their time 'sharing' counters and other resources.
(i.e. seeing $\mathbf{2 0} \div \mathbf{5}$ as $\mathbf{2 0}$ shared between $\mathbf{5}^{\prime}$) - a rather laborious process which can only be achieved by counting, and which becomes increasingly inefficient as both the divisor and the number to be divided by (the dividend) increase)

These children are given little opportunity to use the grouping approach, which comes through exploring the inverse link to the repeated addition structure for multiplication
(E.g. If a child can work out 4 Fives, either by 5 multiplied by $4(5 \times 4)$ or 4 groups of 5 (4×5) they can quickly solve $20 \div 5$ if their first principle is 'How many 5 's are there in 20?')
This method is far more efficient and can quickly be achieved by counting in 5 s to 20, something which most children in Y1 can do relatively easily.

Grouping in division can also be visualised extremely effectively using Numicon, cubes, bead strings, abacuses and number rods. Number lines can then be used as a quick jotting so that children can demonstrate the thinking process that they have used.

The only way to really visualise sharing is through counting things out one by one.

Grouping, not sharing, is the inverse of multiplication.

Sharing is division as fractions, and, as explored within the mental division section, does have its own set of strategies.
Once children have grouping as their first principle for division they can answer any simple calculation by counting in different steps ($2 \mathrm{~s}, 5 \mathrm{~s}, 10 \mathrm{~s}$ then $3 \mathrm{~s}, 4 \mathrm{~s}, 6 \mathrm{~s}$ etc.). As soon as they learn their tables facts then they can answer immediately.
E.g. How much quicker can a child answer the calculations $24 \div 2,35 \div 5,70 \div 10$ or even calculations such as $100 \div 20$ or $300 \div 25$ using grouping?

Children taught sharing as their first principle for division would find it very difficult to even attempt these calculations as they would need far too many resources and it would take a long time to count them all out in order to share them.

Children who have sharing as their first principle also tend to get confused in KS2 when the understanding moves towards 'how many times does one number 'go into' another'.

The use of whole number remainders is also far easier to explain when dealing with division by grouping.

As the examples on the poster display, the calculation $23 \div 5$ can be clearly shown in a wide range of ways if it is viewed as 'How many 5s in 23?' The Numicon, cubes and abacus give useful visualisations of the concept, the footballs allow it to be seen in a real life scenario, whilst the number line and number rods show it in a slightly more abstract, but still clearly explained way.

When children are taught grouping as their default method for simple division questions it means that they;

■ secure understanding that the divisor is crucially important in the calculation

- can link to counting in equal steps on a number line

■ have images to support understanding of what to do with remainders (Numicon)
■ have a far more efficient method as the divisor increases

- have a much firmer basis on which to build KS2 division strategies

Dividing With Fractions (Grouping \& Sharing)

As mentioned earlier, though, the most important teaching point is to make sure that both structures (grouping and sharing) are established immediately.

This means that even complex calculations involving fractions (as either the dividend or divisor) can be solved with confidence and accuracy.

Grouping - Fractions as the Divisor

As the image below shows, division as grouping not only allows regular calculations to be answered quickly by the use of tables facts (or by quickly counting up in different steps).
It also enables children to visualise and answer higher level calculations such as $\mathbf{1 8} \div \mathbf{1 . 5}$.

Using grouping we can ask the question 'How many 1.5s are there in 18?'

The question can then be answered pictorially (or practically using number rods cubes or fraction circles) or simply worked out by counting in 1.5 s to 18 .

18 shared between $11 / 2$ or 1.5 would be almost impossible to imagine / visualise.

Sharing - Fractions as the Dividend

When the dividend is a fraction, and the divisor is a whole number, sharing is usually a far better structure to use when trying to solve the problem.
E.g. $61 / 2 \div 2$.

If we imagine this as $61 / 2$ chocolate bars shared between 2 people then each will get $31 / 4$ bars.
Using grouping in this instance would lead to a far more complicated
(How many 2s in $61 / 2$?)

Even for a calculation such as $1 / 3 \div 2$ (or $1 / 2 \div 3$), we can take a third of a cake then share it between 2 people (or a half of a cake and share it between 3 people)
so that each gets $1 / 6$ of a cake.

3 equal pieces - or thirds - all shared into 2 equal pieces gives 6 equal pieces - or sixths (2 equal pieces - or halves - both shared into 3 equal pieces gives 6 equal pieces - or sixths)

General Principles of Teaching Early Models of Division

Consequently, this policy is mainly structured around the teaching of mental and regular, simple division as grouping, moving from counting up in different steps to learning tables facts and eventually progressing towards the chunking methods of division in KS2.

Sharing is introduced as division in KS1, but is then taught mainly as part of the fractions curriculum, where the link between fractions and division is emphasised and maintained throughout KS2.

As mentioned, due to its efficiency, grouping is the default method for most simple division calculations.

For conceptual understanding, however, when teaching formal 'bus stop' division, the sharing model is ideal for explaining how / why this method actually works. Therefore, this policy bases its written methods on both sharing (bus stop) and grouping (chunking)
(See 'Written Methods of Division’ below for practical examples of bus stop division)

Written Methods Of Division

Stage	Concepts and Number Lines（pre－chunking）
	Grouping Sharing
EYFS	From EYFS onwards，children need to explore practically both grouping and sharing． Links can then be made in both KS1 and KS2 between sharing and fractions． For example，children can be asked to put their 12 dinosaurs into groups of $2,3.4$ or 6 可事为 कौ त कर
Y1	Begin by giving children opportunities to use concrete objects，pictorial representations and arrays with the support of the teacher． Use the words＇sharing＇and＇grouping＇to identify the concepts involved． Before using mathematical apparatus，use real objects and equipment such as cups，cakes， footballs，pencils，apples etc． Children will firstly make then draw these objects by grouping and sharing them，working out the quotient by either counting the number of groups or the number within each group，then finally by writing the division statement．

	Make sure that the children have experience in representing the same division calculation in both ways for a range of different calculations. For example $6 \div 2$ needs to be 'made' as both 6 in groups of 2 (How many 2 s in 6 ?) and 6 shared between 2.
Y2	Identify the link between multiplication and division using the array image. Begin to build on children's understanding that division is the inverse of multiplication, using arrays and number lines to support this thinking. Start to develop the use of the array to show that the same picture can be used to show both multiplication and division, and that the array demonstrates both sharing and grouping with one individual image.
	multiplication, make arrays using a wide range of objects, especially those which naturally occur in real-life such as windows, egg boxes, drawers or cake trays. Emphasise that all simple divisions can be worked out and pictured both ways (sharing or grouping) Encourage the children to see how the array makes it very easy to see both models of division, and practice circling the array depending on whether they want to show either: - - Grouping demonstrated both ways (see above) - Sharing demonstrated both ways (same pictures but opposite calculation written below each image) - The same calculation as either sharing or grouping (the second image in the first picture above as $15 \div 5$ (grouping) or $15 \div 3$ (sharing)

Moving towards a slightly more abstract visual, but one which still maintains clear understanding, the number line is an excellent way to quickly show how counting on (rather than counting back) is the easiest way to use a number line when solving a division calculation.

This is particularly beneficial if dealing with remainders. Using the example below, it is far easier to count forwards in 5 s to 15 then count on 2 than starting at 17 and counting backwards in 5s.

Regularly stress the link between multiplication and division, and how children can use their tables facts to divide by counting forwards in steps.

	It is really important to maintain the use of concrete materials as the calculations become gradually more complex, and tables facts harder to instantly recall. Children using apparatus such as number rods, abacuses, Numicon and cubes can still explain the division and have a better understanding of the calculation if they are asked to make it.	
	Continue to give children practical images for division by grouping when dealing with simple remainders. Asking the question 'How many 5s are there in 23?' allows the opportunity to visualize the remainder. The images of the cubes or the abacus below show 4 complete groups of 5 and a remainder of 3. The Numicon image allows the ' 5 ' and ' 3 ' pieces to be placed over three '10' pieces and see how many 5 s make 20, along with the additional 3. The number rod image is almost a practical representation of a number line, especially when placed on the number track.	

Stage Chunking \& Standard Methods

previously encountered in Y 2 , developing an understanding of division with the number line is an excellent way of linking division to multiplication. It can show division both as repeated subtraction, but it is simpler to show division by counting forward to find how many times one number 'goes into' another.
(Bus Stop) method in Year 3.
It is recommended that when children start to use this strategy, it is only introduced once tables facts are relatively secure.

When introducing Short Division formally, use Base 10 and make sure you introduce it using the sharing model (as mentioned in the 'Teaching Short Division' explanation on the previous two pages)

The calculation starts with, 'I have 7 Tens, to share between 4. That's 1 Ten each with 3 remaining. These 3 Tens are regrouped into 30 Ones. The 32 Ones are now shared between 4 - that's 8 Ones each.

The alternative approach to written division, which should be taught alongside the 'bus stop' method so that it can be used for examples which can be easily accessed, is known as 'Find the Hunk'.
Find the Hunk', as explained earlier, is really a

mental strategy based on partitioning in different ways. For a detailed overview of 'Find the Hunk'
please read the section on mental division.
It can also be used as a quick written jotting to suppport mathematical thinking, enabling children to deal with the calculation quickly
For the example above, the Hunk is defined as being 10 times the divisor.
The divisor is 4 , so the Hunk will be $4 \times 10=40$.
This leaves a chunk of 32 remaining.
Both chunks are then divided by the divisor and then the answers to each totalled.

(D10: Short Division) $72+4=18$ $4 \longdiv { 1 8 }$
 -

As mentioned previously, children should be taken to the standardised 'bus stop' format for short division only
when they have mastered the use of apparatus and are able to explain the process.
At any stage they can revert back to the use of concrete materials to recap / aid their understanding, or to deal with higher level calculations in later year groups

'Find the Hunk' is a mental strategy based on simply partitioning numbers in different ways.
The National Numeracy Strategy chunking method, however, is based on subtraction / repeated addition.

In the example above, $40(4 \times 10)$ is initially subtracted from the dividend, followed by 32 (4×8).

This means that altogether 4×18 has been subtracted, making 18 the answer. This method requires the children to be secure in their division facts, to be able to carry out column subtraction effectively, to write the separate quotients as multiplication statements and also to be able to remember a quite complex layout.
This strategy can be unwieldy, somewhat confusing and relatively difficult to master. Therefore, the recommendation within this to use Find the Hunk as the default strategy for chunking and only to adopt NNS chunking when tackling complex long divisions.

Once short division of 2 digit numbers with a whole number quotient has been mastered, begin to practise examples (using both 'bus stop' and chunking) of short division where the quotient includes remainders.

The examples below are explained in exactly the same way as the previous example but the remainder is simply left as a whole number.
(In later years it will be expressed as a fraction or a decimal for a more accurate answer)

Base 10 will still be used for the first principles of Concrete - Pictorial - Abstract before the children progress to the abstract method.

The number line provides an excellent image to show division with remainders, and can be used to support / instead of 'Find The Hunk'. Find The Hunk is equally simple to use with remainders (see below)

Clear links can now be made to the concrete images explored earlier, so that children understand the method

NNS Chunking remains a fairly tricky method to secure, especially remembering the steps

Mega Hunk' is the natural development of the 'Find the Hunk' strategy, simply using bigger chunks when the dividend is much larger.
In the example above, Mega Hunk is defined as being multiples of the Hunk (which is usually 10 times the divisor).
The divisor is 4 , so the initial Hunk will be 40. The 'Mega Hunk' will be $40 \times 3=120$, leaving a remaining chunk of 36 .
Again, both chunks are then divided by the divisor and then the answers totalled.

National Numeracy Strategy chunking method is also based on multiples of 10 times the divisor. The
example above is an expanded version of the example below.
\qquad
,

The

As before, once understood and explained with a range of calculations, children use the 'bus stop' method.
-
-

This can be
extremely laborious and is open to multiple errors in calculation or layout, so children are then encouraged to look for bigger chunks that can be subtracted. The example above uses exactly the same chunks as 'Mega Hunk' but is a more complex layout.

Continue to use apparatus to show division with remainders, and also where larger amounts of regrouping is needed.

In the example the 3 Hundreds can't be shared between 6 so they are regrouped into 30 Tens.
The 39 Tens are shared between 6, giving 6 each.

The remaining 3 Tens are regrouped into 30 Ones. The 34 Ones are shared between 6, giving 5 each with a remainder of 4

Continue to use the Find the Hunk strategy whenever possible.
Even with remainders it becomes a very efficient mental jotting. With the example above 394 can be regrouped as $360+34$.
Both chunks can then quickly be divided by 6 , leaving a remainder of 4 .

By this stage children using the NNS method should be finding much larger chunks of the divisor, making the method much easier to complete (although still less efficient than Find the Hunk)

When the Hundreds can be shared between the divisor, it is beneficial to still use concrete materials, alloowing children to actually regroup / exchange the Hundreds and Tens.
In the example above, the 5 Hundreds can be shared (in Hundreds) between 4, giving 1 each.
The remaining Hundred is regrouped into Tens.
The 13 Tens are shared between 4 , giving 3 each. The remaining Ten is regrouped into Ones.
The 16 Ones are shared between 4, giving 4 each.

Once a child is confident with the apparatus then, as before, they can use the 'bus stop' method, explaining it when necessary.

For this type of division, there are 3 'hunks'.
536 is regrouped / partitioned a different way into a multiple of 400 (400), a multiple of 40 (120) and a multiple of 4 (16).
Each of these 3 numbers is then divided by 4.

Children who have practiced 'Mega Hunk' for smaller numbers and are confident in their tables facts still find this a fairly simple method to complete.

The NNS Chunking method, in effect, partitions the 536 in the same way as Find The Hunk.
The need for subtraction and the complex layout makes it more difficult to remember without a very clear understanding, but it does allow children to practice a method that they may prefer once they are asked to do long division.

The final stage in which apparatus would usually be used is for simple 4 digit short division calculations.
Once children can explain a 4 digit calculation using concrete materials then they are ready to use 'bus stop' method for any calculations of 3 digits and above.

If the example on the left was to be completed using
'Mega Hunk' then it would be a very simple: -

$$
1278 \div 6=213
$$

	D10e: Short Division 5978 + $7=854$ At this point the numbers would require far too much apparatus for the calculation to be viable visually so children would simpy use a 'bus stop' method. If at any point, however, they were asked to explain / reason their answer, they would be able to use the understanding developed through the use of Base 10.	Even with 4 digit numbers, Mega Hunk is relatively simple for children with a good sense of number. 5978 can be regrouped into 5600, 350 and 28. These numbers can then be divided by 4. NNS chunking, as before, displays the same numbers but in a slightly more difficult layout.
	Children should develop the ability to represent the quotient initially as a straightforward remainder (given as a whole number), but also as a decimal or fractional remainder. The examples of short division below show the whole number remainder in the Mega Hunk \& NNS examples, but also the fractional and decimal remainders in the 'bus stop' examples.	
96	Once a child is in Upper Key Stage 2 they should be aware that giving a remainder as a whole number is not accurate enough. A remainder of 1 , for example, has a completely different meaning when the divisor changes. When dividing by 2 it represents $1 / 2$ (or 0.5), when dividing by 4 it is $1 / 4$ (or 0.25), when dividing by 10 it is worth $1 / 10$ (or 0.1). In the example above, when dividing by 5 , the remainder represents / is worth $1 / 5$ (or $0.2)$.	$\begin{aligned} & \text { D11f: Chunkilng Mega Chunk } \\ & 169 \mathrm{rl} \\ & 5 \longdiv { 8 4 6 } \\ & -\frac{500}{346}(5 \times 100) \\ & -\frac{300}{46}(5 \times 60) \\ & \quad \frac{-45}{1}(5 \times 9) 846+5=169 \mathrm{rl} \end{aligned}$
E)	- Excalibur Primary School Sense of Number Edi	Calculation Policy © www.numberfun.com 02

If necessary, place value counters can be used for children to explain short division using decimals.
In the example above, the 8 Tens, 7 Ones and 5 Tenths have been regrouped into 7 Tens, 14 Ones and 35 Tenths, each of which can be divided by 7 .

D1Oi: Short Division

$$
87.5 \div 7=12.5
$$

Decimal Hunk allows the children to represent a relatively difficult calculation in an efficient way, one that can be answered very quickly. If 87.5 is regrouped into 70,14 and 3.5 , each number can then be divided by 7 , and the quotient determined immediately.

When introducing simple long division questions, where the multiples of the divisor are fairly easy to work out, it is often easier to find a quotient using the Mega Hunk strategy.
The eg is no more difficult than many short divisions.
Dllg2: Chunking Ingoum $^{\text {and }}$
$1 5 \longdiv { 4 8 0 }$
$-150(15 \times 10)$ 330
$-150(15 \times 10)$ 180
-150 (15 $\times 10$)

$\begin{aligned} &$| 30 |
| :--- |
| -30 |$(15 \times 2)\end{aligned} \quad 480+15=32$

$480+15=32$
As with some of the earlier examples, NNS chunking can be unwieldy if the smaller chunk is repeatedly subtracted (see above).
The method is much more efficient with a larger chunk subtracted (see below).
Dllgl: Chunking

There are three different ways of calculating a more complex long division - continuing to use the short division method but with bigger numbers, learning the traditional method or using NNS Chunking. Find the Hunk is no longer an efficient strategy as the numbers are too big to work with efficiently.

Only children who are extremely proficient with mental calculation would use the short division approach. It requires them to be able to work out a mental difference accurately, and often to 'carry' over a fairly substantial amount.
In the example above 98 Tens would be shared between 37 , giving 2 each.
The remaining 24 Tens would be regrouped into 240 Ones.
The 243 Ones are then shared between 37, giving 6 each with a remainder of 21 .

Most schools now adopt the traditional long division method, where multiples of the divisor are subtracted, and digits are 'dropped down' to form a new calculation.

This can be a complicated method to remember for many pupils as it is very difficult to explain and doesn't really require place value. It relies on them being able to memorise the method.

It is only at this final stage where NNS Chunking becomes the preferred method.
Unlike the traditional method (see the left hand column), where it is difficult to explain the method using place value, the NNS method maintains place value.
In the extended example above, the chunk of 370 is repeatedly subtracted, followed by a chunk of 222.

The 'abridged' or shortened NNS chunking method is probably the most sensible and efficient way to approach long division.Using larger complete chunks of the divisor means that the children can see exactly what is being subtracted and don't have to rely on 'dropping down' any of the digits. Looking at this example alongside the one on the left, it is clear that NNS Chunking is almost the same methods as traditional long division, but with secure place value (i.e. 740 being subtracted rather than 74).

Written by Anthony Reddy and Dave Godfrey - Sense of Number Maths Consultants © www.senseofnumber.co.uk 2020

