Multiply 4-digits by 1-digit

Reasoning and Problem Solving

Alex calculated 1,432 $\times 4$
Can you work out the missing numbers using the clues?
Here is her answer.

	Th	H	T	O
	1	4	3	2
\times				4
	4	16	12	8

$1,432 \times 4=416,128$
Can you explain what Alex has done wrong?

- The 4 digits being multiplied by 5 are consecutive numbers.
- The first 2 digits of the product are the same.
- The fourth and fifth digits of the answer add to make the third.

Year 5| Spring Term | Week 1 to 3 - Number: Multiplication \& Division

Multiply 2-digits (Area Model)

Reasoning and Problem Solving

What mistake has Eva made?
Explain your answer.

Amir hasn't finished his calculation. Complete the missing information and record the calculation with an answer.

Farmer Ron has a field that measures 53 m long and 25 m wide.

Farmer Annie has a field that measures 52 m long and 26 m wide.

Dora thinks that they will have the same area because the numbers have only changed by one digit each.

Do you agree? Prove it.

Year 5| Spring Term | Week 1 to 3 - Number: Multiplication \& Division

Multiply 2-digits by 2-digits

Reasoning and Problem Solving

Amir has multiplied 47 by 36

Alex says,

Who is correct?
What mistake has been made?

Multiply 3-digits by 2-digits

Reasoning and Problem Solving

$$
22 \times 111=2442
$$

$$
23 \times 111=2553
$$

$$
24 \times 111=2664
$$

What do you think the answer to 25×111 will be?

Here are examples of Dexter's maths work.

What do you notice?
Does this always work?
Pencils come in boxes of 64
A school bought 270 boxes.
Rulers come in packs of 46 A school bought 720 packs. How many more rulers were ordered than pencils?

He has made a mistake in each question.
Can you spot it and explain why it's wrong?

Correct each calculation.

Year 5 | Spring Term | Week 1 to 3 - Number: Multiplication \& Division

Multiply 4-digits by 2-digits

Reasoning and Problem Solving

Spot the Mistakes
Can you spot and correct the errors in the calculation?

		2	5	3	4
\times				2	3
		1^{7}	5	19	2
		15	0	6	8
	1	2	6	6	0

Teddy has spilt some paint on his calculation.

What are the missing digits?
What do you notice?

Multiply 4-digits by 2-digits

Reasoning and Problem Solving

True or False?

- $5,463 \times 18=18 \times 5,463$
- I can find the answer to $1,100 \times 28$ by calculating $1,100 \times 30$ and subtracting 2 lots of 1,100
- $702 \times 9=701 \times 10$

234578

Place the digits in the boxes to make the largest product.

Divide 4-digits by 1-digit

Reasoning and Problem Solving

Jack is calculating 2,240 $\div 7$
He says you can't do it because 7 is larger than all of the digits in the number.
Do you agree with Jack?
Explain your answer.

Spot the Mistake

Explain and correct the working.

Year 5| Spring Term | Week 1 to 3 - Number: Multiplication \& Division

Divide with Remainders

Reasoning and Problem Solving

I am thinking of a 3-digit number.

When it is divided by 9 , the remainder is 3

When it is divided by 2 , the remainder is 1

When it is divided by 5 , the remainder is 4

What is my number?

Always, Sometimes,

A three-digit number made of consecutive descending digits divided by the next descending digit always has a remainder of 1

$$
765 \div 4=191 \text { remainder } 1
$$

How many possible examples can you find?

Year 6 | Autumn Term | Week 3 to 6 - Number: Four Operations

Short Division

Reasoning and Problem Solving

Find the missing digits.

Work out the value of C .
(The bar models are not drawn to scale)

Find the difference between A and B.

Division using Factors

Reasoning and Problem Solving

Calculate:

- $1,248 \div 48$
- $1,248 \div 24$
- $1,248 \div 12$

What did you do each time? What was
your strategy?
What do you notice? Why?
Tommy says,

To calculate $4,320 \div 15$
I will first divide 4,320
by 5 then divide the answer by 10

Do you agree?
Explain why.

Class 6 are calculating $7,848 \div 24$
The children decide which factor pairs to use. Here are some of their suggestions:

- 2 and 12
- 1 and 24
- 4 and 6
- 10 and 14

Which will not give them the correct answer? Why?

Use the correct factor pairs to calculate the answer.
Is the answer the same each time?

Which factor pair would be the least efficient to use? Why?

Year 6 | Autumn Term | Week 3 to 6 - Number: Four Operations

Long Division (1)

Reasoning and Problem Solving

Odd One Out

Which is the odd one out?
Explain your answer.

$$
\begin{aligned}
& 512 \div 16 \\
& 672 \div 21 \\
& 792 \div 24
\end{aligned}
$$

Spot the Mistake

$$
855 \div 15=
$$

		0	5	1	0	
1	5	8	5	5		
	-	7	5			$(\times 4)$
		1	0	5		
	-	1	0	5		$(\times 10)$
				0		

Long Division (2)

Reasoning and Problem Solving

Which calculation is harder?

$$
1,950 \div 13
$$

Explain why.

$$
1,950 \div 15
$$

Year 6| Autumn Term | Week 3 to 6 - Number: Four Operations

Long Division (3)

Reasoning and Problem Solving

Here are two calculation cards.

$$
A=396 \div 11
$$

$$
B=832 \div 11
$$

Whitney thinks there won't be a remainder for either calculation because 396 and 832 are both multiples of 11

Rosie disagrees, she has done the written calculations and says one of them has a remainder.

Who is correct? Explain your answer.

Year 6| Autumn Term | Week 3 to 6 - Number: Four Operations

Long Division (4)

Reasoning and Problem Solving

Class 6 are calculating three thousand, six hundred and thirty-three divided by twelve.

Rosie says that she knows there will be a remainder without calculating.

Is she correct?
Explain your answer.
What is the remainder?

[^0]
[^0]: Which numbers up to 20 can 4,236 be
 divided by without having a remainder?
 What do you notice about all the numbers?

