Year 6 | Spring Term | Week 10 to 11 - Number: Ratio

Using Ratio Language

Reasoning and Problem Solving

Explain why.	For every two red tiles there are responses:
remaining, can she continue her pattern	
without there being any tiles left over?	
If Whitney tiles.	
continues the	
pattern she will	
need 16 red tiles	
and 24 yellow	
tiles. She cannot	
continue the	
pattern without	
there being tiles	
left over.	

True or False?

- For every red cube there are 8 blue cubes.
- For every 4 blue cubes there is 1 red cube.
- For every 3 red cubes there would be 12 blue cubes.
- For every 16 cubes, 4 would be red and 12 would be blue.
- For every 20 cubes, 4 would be red and 16 would be blue.

Year 6 | Spring Term | Week 10 to 11 - Number: Ratio

Ratio and Fractions

Reasoning and Problem Solving

Ron plants flowers in a flower bed. For every 2 red roses he plants 5 white roses.	Ron is incorrect because $\frac{2}{7}$ of the roses are red. He has mistaken a part with the whole.
Whe says,	
Explain your answer.	

There are some red and green cubes in a bag. $\frac{2}{5}$ of the cubes are red.

True or False?

- For every 2 red cubes there are 5

False green cubes.

- For every 2 red cubes there are 3

True green cubes.

- For every 3 green cubes there are 2

True
False

- For every 3 green cubes there are 5 red cubes.

Explain your answers.

Year 6 | Spring Term | Week 10 to 11 - Number: Ratio

Introducing the Ratio Symbol

Reasoning and Problem Solving

Tick the correct statements.

- There are two yellow tins for every three red tins.
- There are two red tins for every three yellow tins.
- The ratio of red tins to yellow tins is 2:3
- The ratio of yellow tins to red tins is 2:3

Explain which statements are incorrect and why.

The first and last statement are correct. The other statements have the ratios the wrong way round.
$R: G$
3:5
The ratio of red pens to green pens is 3:5

For every 1 red pen there are two blue pens.

Write down the ratio of red pens to blue pens to green pens.
$R: B$
$1: 2$ or
3: 6
$R: B: G$
$3: 6: 5$

Year 6 | Spring Term | Week 10 to 11 - Number: Ratio

Calculating Ratio

Reasoning and Problem Solving

Teddy has two packets of sweets.

In the first packet, for every one strawberry sweet there are two orange sweets.

In the second packet, for every three orange sweets there are two strawberry sweets.

Each packet contains 15 sweets in total.
Which packet has more strawberry sweets and by how many?

The first packet has 5 strawberry sweets and 10 orange sweets. The second packet has 6 strawberry sweets and 9 orange sweets. The second packet has 1 more
strawberry sweet than the first packet.

Annie is making some necklaces to sell. For every one pink bead, she uses three purple beads.

Each necklace has 32 beads in total.
The cost of the string is $£ 2.80$
The cost of a pink bead is $72 p$.
The cost of a purple bead is $65 p$.
How much does it cost to make one necklace?

Each necklace has
8 pink beads and
24 purple beads.
The cost of the pink beads is £5.76

The cost of the purple beads is £15.60

The cost of a necklace is $£ 24.16$

Year 6 | Spring Term | Week 10 to 11 - Number: Ratio

White

Using Scale Factors

Reasoning and Problem Solving

Draw a rectangle 3 cm by 4 cm .
Enlarge your rectangle by scale factor 2.
Compare the perimeter, area and angles of your two rectangles.

Here are two equilateral triangles.
The blue triangle is three times larger than the green triangle.

(Not drawn to scale)
Find the perimeter of both triangles.

The perimeter has doubled, the area is four times as large, the angles have stayed the same.

The blue triangle has a perimeter of 15 cm .

The green triangle has a perimeter of 5 cm .

Year 6 | Spring Term | Week 10 to 11 - Number: Ratio

Calculating Scale Factors

Reasoning and Problem Solving

$\left.\left.\begin{array}{l|l|}\hline \begin{array}{l}\text { A rectangle has a perimeter of } 16 \mathrm{~cm} . \\ \text { An enlargement of this rectangle has a } \\ \text { perimeter of } 24 \mathrm{~cm} .\end{array} & \begin{array}{l}\text { Smaller rectangle: } \\ \text { length }-6 \mathrm{~cm} \\ \text { width }-2 \mathrm{~cm}\end{array} \\ \begin{array}{l}\text { The length of the smaller rectangle is } \\ 6 \mathrm{~cm} .\end{array} & \begin{array}{l}\text { Larger rectangle: } \\ \text { length }-9 \mathrm{~cm} \\ \text { width }-3 \mathrm{~cm}\end{array} \\ \text { Draw both rectangles. }\end{array} \quad \begin{array}{l}\text { Scale factor: } 1.5\end{array}\right] \begin{array}{l}\text { Sometimes. } \\ \text { This only works } \\ \text { when we are } \\ \text { multiplying or } \\ \text { dividing the } \\ \text { true? }\end{array} \quad \begin{array}{l}\text { lengths of the } \\ \text { sides. It does not } \\ \text { work when adding } \\ \text { or subtracting. }\end{array}\right\}$

Ron says that these three rectangles are similar.

Year 6 | Spring Term | Week 10 to 11 - Number: Ratio

Ratio and Proportion Problems

Reasoning and Problem Solving

Alex has two packets of sweets.

In the first packet, for every 2 strawberry sweets there are 3 orange.

In the second packet, for one strawberry sweet, there are three orange.

Each packet has the same number of sweets.

The second packet contains 15 orange sweets.

How many strawberry sweets are in the first packet?

.

17

White

Amir has 180 g butter.
What is the largest number of flapjacks he can make?

How much of the other ingredients will he need?

He has enough butter to make 15 flapjacks. He will need 150 g brown soft sugar,
6 tablespoons golden syrup,
375 g oats and 60 g sultanas.
$\square \mid$

