
2) $1,1 \frac{1}{2}, 2,2 \frac{1}{2}, 3,3 \frac{1}{2}, 4,4 \frac{1}{2}, 5$
3) a)

b)

4) $2 \frac{6}{7}$

The fractions are decreasing by two whole ones each time.
1)

Todd is correct because the number line is increasing by one eighth each time so after $\frac{17}{8}$ comes $\frac{18}{8}$.
Amy is also correct: $\frac{18}{8}$ written as a mixed number would be $2 \frac{2}{8}$ because 18 divided by eight equals two remainder two.
Paolo is incorrect. He has worked out that the missing improper fraction is $\frac{18}{8}$, which is correct, but then he has tried to record it as a mixed number and got confused. He separated the digits in 18 to make $18 \frac{8}{8}$ instead of dividing 18 by eight.
2) Mila didn't need to say sixth sixths and one whole as now she has counted one whole twice: six sixths is the same as one whole.
3) The statement is true. To prove it, children should draw a number line with mixed numbers and improper fractions, showing the relationship between the two.
1)

2) a) B, F, A, E, D, C
b) The fractions are decreasing by three ninths each time.

