

10

 $1\frac{7}{10}$ 

10

16/10

10

 $1\tfrac{5}{10}$ 

4) 2<sup>6</sup>/<sub>7</sub>

10

 $2\tfrac{1}{10}$ 

10

2

The fractions are decreasing by two whole ones each time.

10

 $1\tfrac{9}{10}$ 

10

18

| 1) 16 8 | 17<br>8 | 8 | 19 8 | 20<br>8 | 21 8 | 22<br>8 |
|---------|---------|---|------|---------|------|---------|
|         |         |   |      |         |      |         |



Todd is correct because the number line is increasing by one eighth each time so after  $\frac{17}{8}$  comes  $\frac{18}{8}$ .

Amy is also correct:  $\frac{18}{8}$  written as a mixed number would be  $2\frac{2}{8}$  because 18 divided by eight equals two remainder two.

Paolo is incorrect. He has worked out that the missing improper fraction is  $\frac{18}{8}$ , which is correct, but then he has tried to record it as a mixed number and got confused. He separated the digits in 18 to make  $1\frac{8}{8}$  instead of dividing 18 by eight.

- 2) Mila didn't need to say sixth sixths and one whole as now she has counted one whole twice: six sixths is the same as one whole.
- 3) The statement is true. To prove it, children should draw a number line with mixed numbers and improper fractions, showing the relationship between the two.





2) a) B, F, A, E, D, C

b) The fractions are decreasing by three ninths each time.

c)  $\frac{q}{q}$ , l, or