Multiply 3 Digits by 1 Digit

7. Order calculations A, B and C from largest to smallest according to their answers.
A.
B.
C.
D.

	3	2	0
x			6

\qquad

Create a fourth calculation (D) to continue the order of the answers.
8. Use these digit cards to complete the multiplication calculations below. Each digit card can only be used once.

A.

B.

Count in Fractions

7. Use the fraction cards to complete the top of the number line.
$\frac{24}{12} \quad \frac{15}{12} \quad \frac{21}{12}$

Now complete the bottom of the number line using mixed numbers.
8. A fraction sequence starts at $\frac{7}{10}$ and increases by $\frac{3}{5}$ each time.

Start

What is the fifth number in the sequence?
9. Anoop is thinking of a fraction sequence.

My sequence starts with a mixed number between
2 and 3.
The number increases by $\frac{3}{4}$ each time. There are no exact whole numbers in my sequence.

Write the first four fractions in Anoop's sequence. Find a second possibility.

classroomsecrets.co.uk

What is a Fraction?

7. Shade and complete the shapes to represent the equivalent fractions below.
A.
B.

C.
D.

$\frac{4}{5}$

$\frac{6}{8}$

Write the correct fraction next to each shape.
8. Match the number lines to the representations.
A.

B.

C.

1. 0
2.

3.

9. Josie and Eliza are discussing the fraction represented below.

Who is correct? Explain your reasoning.

classroomsecrets.co.uk

Equivalent Fractions 1

7. Use the bar model to help you find the equivalent fractions.
A. $\frac{\mathbf{1}}{\mathbf{2}}=\frac{\square}{\square}$
B. $\frac{\mathbf{3}}{\mathbf{2 4}}=\frac{\square}{\square}$
C. $\frac{10}{12}=\frac{\square}{\square}$

8. Match each fraction to the equivalent shaded fraction.
A. $\frac{1}{3}$
B. $\frac{6}{8}$
C. $\frac{14}{24}$
D. $\frac{12}{15}$
9.

2.

Which fraction is the odd one out? Write an equivalent fraction for it.
9. Timmy, Poppy and Hollie each have different equivalent fractions.

What are each of their fractions? Explain how you know.

Comparing Area

7. Find the two shapes below with the same area.

8. Which two shapes below must swap places for the inequality symbols to be correct?

9. Add a set of the extra squares below to each shape to make the inequality symbols correct. You can only use a set of extra squares once. They cannot be rotated.

classroomsecrets.co.uk

Counting Squares

7. Count the squares in the shapes below to find the odd one out. Circle your answer.
A.

B.

C.

8. Tick the shape that will make the statement correct.

A.

B.

C.

9. Helena and Max have each drawn an 8 -sided, rectilinear shape on a grid. They are discussing the areas of their starting shapes after the paper was nibbled by their dog!

My shape had the largest area because it was 6 squares wide and 3 and a half squares tall.

My shape had the largest area because it was 7 squares wide and 2 and a half squares tall.

Helena

Who is correct? Convince me.

Divide 3 Digits by 1 Digit

7. Nathan has solved the calculation $736 \div 9$ using a part-whole model. He says,

Complete the part-whole model to find his mistake.
8. Add the symbol <, > or = to make the following statement correct.

$359 \div 6$		
\mathbf{H}	T	\mathbf{O}

Use the part-whole model and place value chart to help you.
9. Abiha challenges her friend to write three calculations that fit with her clues below.
A and B have the same remainder.

The answer to calculation B is between 100 and 150.

The first 3 digits in calculation C are odd. It was divided by a multiple of 3.
All calculations have a 3-digit whole number solution which are in ascending order.

What could the three calculations be?
A. $730 \div$ \square
\square r
B. 4

