1) a) Delilah received $12 p$ change.

b) Harrison received $£ 1$ and $42 p$ change.

2) $£ 3-£ 1=£ 2$
$100 p-60 p=40 p$
Abraham receives $£ 2$ and 40p change.
3) $£ 19-£ 8=£ 11$
$100 p-54 p=46 p$

Jennie receives $\& 11$ and $46 p$ change.

1) The swimming pool.
2) Sasha's change cannot be correct. She should receive 62 pence change. This cannot be made using only silver coins. To make the 2 pence would require either one $2 p$ coin or two Ip coins and these are not silver.
3) Finlay's model would be easier to calculate the change because he has exchanged $£ 1$ for $100 p$. By doing this, he could then calculate $£ 19-£ 8$ and 100 p - 68 p to find he needs $£ 11.32$ change.
4) a) He needs $39 p$ change.

Accept any three differing combinations of coins to make this amount. For example:

20p, 10p, 5p, 2p and 2p
10p, 10p, 10p, 5p, 2p, and 2p
20p, $5 p, 5 p, 5 p, I p, I p, I p$ and $I p$.
b) Leon could have ordered either banana and strawberry ($£ 1$ and 46p) or melon and strawberry ($£ 2$ and 76p).
2) The leeks must cost $£ 1$ and $90 p$. The cost of the peas and carrots must total $£ 2$ and $90 p$ with each item costing less than £2 each.

There are many possible answers. Here are a few examples:

leeks $=£ 1$ and $90 p$			
peas $=£ 1$ and $90 p$			
carrots $=£ 1$	leeks $=£ 1$ and $90 p$		
peas $=£ 1$ and $50 p$			
carrots $=£ 1$ and $40 p$		\quad	leeks $=£ 1$ and $90 p$
:---			
peas $=£ 1$ and $14 p$			
carrots $=£ 1$ and $76 p$			

