1) Georgia has drawn a bar model to subtract 2 mixed numbers.

Use the bar model to solve her calculation.

a) $2 \frac{3}{8}-1 \frac{1}{4}=$

Use Georgia's method to solve these calculations. Give your answers in their simplest form.
b) $3 \frac{2}{3}-2 \frac{1}{6}=\square$
c) $4 \frac{3}{5}-3 \frac{3}{10}=$

2) Husnain has used a different method to subtract 2 mixed numbers. $2 \frac{1}{4}-1 \frac{3}{8}=1 \frac{5}{4}-1 \frac{3}{8}=1 \frac{10}{8}-1 \frac{3}{8}=\frac{7}{8}$
Use Husnain's method to solve these calculations.
Give your answers in their simplest form.
You could draw a bar model to support your answer.

a) $2 \frac{3}{4}-1 \frac{7}{8}=\square$
b) $4 \frac{1}{3}-2 \frac{5}{9}=$ \qquad
3) Harriet jumped $2 \frac{3}{4}$ metres in the long jump. Ashley jumped $1 \frac{5}{8}$ metres.

How much further did Harriet jump than Ashley?

1) Martha is subtracting fractions.

$$
3 \frac{2}{5}-3 \frac{3}{10}
$$

3 subtract 2 is 1 , and 10 subtract 5 is 5 , so the answer is $\frac{1}{5}$.
a) Explain what Martha has done wrong.
\qquad
b) What should she have done instead?
c) What should her answer have been?

2) Which calculation is the odd one out? Explain your thinking

C $4 \frac{2}{9}-2 \frac{1}{3}=$
3) Write a subtraction word problem that matches this image.

1) Olivia went on a 10-mile hike over the weekend. At the end of the weekend, she had $4 \frac{2}{4}$ miles left to reach her goal.
On Saturday, I hiked a whole number of miles and some tenths.

Olivia
How far could Olivia have hiked on Saturday, and how far on Sunday?

2) Use each digit card once to make this calculation have the smallest possible answer.

3) Use each of these digit cards once to make this calculation have the largest possible answer. Each fraction must be a proper fraction.
$1 \quad 2$
4
5

